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INTRODUCTION

The Large Space Structure (LSS) research program was originally formulated n---

----- te198 in response to Wv-)ncreasing concern that performance robustness of AirForce LSS y4 ystems would be inadequate to meet mission objectives. fn partic' z-: ._

S..-Iar-,uncertainties in both system dynamics and disturbance spectra characterizations

(both time varying and stochastic uncertainty) significantly limit the performance
2

attainable with fixed gain, fixed architecture controls. Therefore, tI- use of an adap- - %d- .Pt -"

live system, where disturbances and/or plant models are identified prior to or during
control, gives systems designers more options for minimizing the risk in achieving per-
formance objectives. "

-The aim of adaptive ,control is to implement in real me and onin as many as

possible of the design,'functions now performed offhine by the control engineer9i"o
give the controller (-4 teligence."'- To realize this aim, both a theory of stability and
performance of such inherently nonlinear controls is essential as well as a technology

*" capable of achieving the implementation. T, r - .' .. /f - ,i 9
The issues of performance sensitivity, robustness, and achievement of very high

performance in an LSS system can be effectively addressed using adaptive algorithms.

The need to identify modal frequencies, for example, in high-performance disturbance

rejection systems has been shown in ACOSS (1981) and VCOSS (1982). The deploy-
ment of high-performance optical or RF systems may require on-line identification of
critical modal parameters before full control authority can be exercised. Parameter '--

%4 sensitivity, manifested by performance degradation or loss of stability (poor robust-
ness) may be effectively reduced by adaptive feedback mechanizations. Reducing the

effects of on-board disturbance rejection) is particularly important for planned Air .
Force missions. For these cases, adaptive control mechanizations are needed to pro- p

duce the three-to-five orders-of-magnitude reductions in line-of-sight jitter required by _1%1-7

the mission.

Research is essential to identify the performance limitations of adaptive strategies
for LSS control both from theoretical and hardware mechanization viewpoints. The

long range goal of this proposed research program is to establish guidelines for select-

ing the appropriate strategy, to evaluate performance improvements over fixed-gain ,".
mechanizations, and to examine the architecture necessary to produce a practical

hardware realization. The initial thrust, however, is to continue to build a strong

" theoretical foundation without losing sight of the practical implementation issues. J

, :.:.*'
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RESEARCH OBJECTIVES ."

The aims of this research study are to extend and develop adaptive control theory
and its application to LSS in several directions. These include:

.. - ,. d

(1) Theoretical Development: The initial emphasis has been on slow adapta- .
tion, since this covers many LSS situations. Later on we will examine fast .
adaptation. The theory developed here will provide for:

(a) estimates of robustness, i.e., stability margins vs. performance bounds;

(b) estimates of regions of attraction and rates of parameter convergence to .: "
these regions; -..-

(c) extension of the present linear finite dimensional adaptive theory to ." . ..
include nonlinear and infinite dimensional plants and controller struc-

tures; and

(d) extensions to decentralized systems.

(2) Parameter Adaptive Algorithms: Assesses the behavior of different algo-
rithms, including: gradient, recursive least squares, normalized least mean
squares, and nonlinear observer (e.g., Extended Kalman Filter). . ,,, .

(3) Parametric Models: Assess the impact of model choices. In particular we
.11

will examine the effect of explicit and implicit model choices. An explicit
model, for example, is a transfer function whose coefficients are all unk-
nown. In an implicit model model transfer function, the coefficients would
be functions of some other parameters. Implicit models usually arise from .

physical or experimental data, whereas explicit models are selected for -

analytical convenience.
-~ I'..q

(4) Adaptive Nonlinear Control: Although our early effort is to study adaptive
linear control, there are many LSS situations where the control is nonlinear,

e.g., large angle maneuvers, slewing.

2 4
..-. .T.T -.. . !
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CURRENT STATUS

At the present time we stand at the beginning stages of the theoretical develop- N
ment in adaptive control. The result of recent efforts are contained in the selectedI.%
papers in the Appendix and the references therein. A summary of earlier efforts is
contained in the recently published textbook Stability of Adaptive Systems: Passivity

* and Averaging Analysis, MIT Press, 1986. This publication is an outgrowth of
research supported under this contract and involved a considerable amount of colla-
borative effort among several researchers in the field of adaptive control. The text
discusses adaptive systems from the viewpoint of stability theory. The emphasis is on

'~,*. ~.methodology and basic concepts, rather than on details of adaptive algorithm. The

* analysis reveals common properties including causes and mechanisms for instability
and the means to counteract them. Conditions for stability are presented under slow
adaptation, where the method of averaging is utilized. In this latter case the stability

-. result is local, i.e., the initial parametrization and input spectrum is constrained. Based

adatie cntolof LSS.

To remove the restrictiveness of slow adaptation requires an understanding of the
tasetbehavior of adaptive systems. A preliminary investigation is reported in

Kosut et al. (1986) which is reprinted in the Appendix. The transient behavior of not-
"S.slow or even rapid adaptation is a significant problem in the adaptive control of LSS, :J"
p e.g., rapid retargeting.

Another approach to adaptive control is to calibrate (or tune) the controller based
on a current estimate of the LSS model. This involves not just knowing one model, .

'. ,.~.but rather, a model set. This problem, which we refer to as adaptive calibration, is
essentially that of developing a technique of on-line robust control design from an

.. ~ f.identified model. Although we have worked on this problem for some time it is only

recently that we have established a theoretical basis for estimating model error from
V system identification [see Kosut (1986), a reprint is in the Appendix]. This research

has raised many new questions which need to be considered, e.g., what is the appropri-
* - ate robust controller parametrization; how does it relate to model parametrization; how

'S'S.to iterate on the data if the estimate of model error is too large; what are the heuristics

S: for experiment design.

3 "
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COLLABORATIVE RESEARCH EFFORT - -

It should be emphasized, and acknowledged, that a great deal of collaborative

effort has been, and is being, expended by several researchers in the field of adaptive .

control. The text referred to before is in part due to the two visits by Dr. Kosut to the

Department of System Engineering at the Australian National University. Support for V

these visits has come from this contract, a travel grant from the NSF International Pro-
gram (INT-85-13400), and a Visiting Fellow Award from the Australian National

University.

FUTURE DIRECTIONS • .,.-

Based on our recent results as reported here, we envision near-term activity in

several directions, including: .

(a) transient analysis of adaptive control; :.

(b) analysis of adaptive calibration;
- .,1 '

(c) decentralized control structures;

(d) effect of nonlinear and infinite dimensional phenomena; e..
.% %,*

(e) effect of different algorithms and parametrizations.
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Issues in Control Design for Large Space Structures

Robert L. Kosut and Michael G. Lyons I .,
Integrated Systems Inc
101, University Avenue
Palo Alto, Ca. 94301

Abstract

The development of a design methodology for the control of Large Space Structures
(LSS) involves many different issues. In this paper we present a selective discussion of the '\. v
theoretical and practical issues that seem most relevant. The discussions cover various types
of control design procedures, including both robust (non-adaptive) as well as adaptive, with
an emphasis on their practical use.

1. LSS Control Problem Setting

1.1 Control Design Objectives

Problems associated with vibration control and accurate pointing of LSS systems typically .
involve a combination of the following control-performance objectives. ..- :.

1. modal damping augmentation to enhance transient settling or improve quasi-static
vibration propagation behavior,

2. stabilization of the attitude control system,

3. eigenvector modification to reject narrow band steady-state disturbances, and

4. maneuver load management to minimize structural loads or modal excitation (transient .

or steady-state). .*

S1. Modeling

The basis for selecting a control strategy must include an adequate description of the rel-,.
evant structural dynamics together with a description of how system performance is to be

W . measured. Initially, continuum models were suggested as the basis for proper system design -

since discretization of the model could be postponed or eliminated. Ur.fortunately, practical
spacecraft configurations do not present simple boundary conditions or simple shapes, hence
partial differential equation (p.d.e.) representations are nearly impossible to write. However
such continuum models have provided useful insight into appropriate discrete represents- [.

tions. Finite element models can provide adequate fidelity, at least over the frequency range
needed for the control design model, and are supported with sophisticated software tools ,,.
easily adapted to the needs of control design [1].

1.3 Two-Level Control Architecture

The natural structural properties of LSS systems compel the use of a two-level control system
g "' architecture as shown in Figure 1. The two levels are a colocated rate-damping control system .

and a noncolated high performance control system. The colocated system consists typically

of rate damping devices, either active or passive, and requires a coarse knowledge of system
dynamics. These are inherently robust but yield low performance. They essentially provide
a wide-band, Low-Authority Control (LAC) and are often referred to ts the LAC-system.

".. ' 267
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HAC is dependent on accurate narrow-band models. For such requirement, it is essential --

that control design techniques manage both dependence on model fidelity and system gain in ...
regions where model fidelity is poor. This has generally been accomplished using fixed-gain"", ''

robust control theory, [4). With this architecture it is likely that only the HAC would be ..
tuned by an adaptive system since the LAC is inherently robust. .,.
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Figure 2: Closed-loop System Performance vs. Structural Parameter Variations.

that on-line procedures are needed for identification and control. %

The generic properties of closed-loop system performance vs. structural parameter vari-
ations are depicted in Figure 2.

2. Control Design for HAC/LAC Architecture

In this section we wil discuss the steps involved in control design for the HAC/LAC ar- '

Y chitecture. Although the architecture is specialized, the control design methodology is notLand can be quite general. We will discuss three methodologies for design: (1) an LQG
based methodology whose genesis is the ACOSS/VCOSS programs, and (2) a more recent
approach involving what is known as "Q-parametrization" and Hoo-optimization". These -

latter methods are frequency domain oriented rather than state-space oriented like the LQG
approach. (3) We will also discuss an adaptive control strategy which can be utilized for
online self-tuning. We refer to this approach as "adaptive calibration". -

2.1 Limitations of Design

Independent of the design method, the defining characteristic of the vibration control prob-
2 lem is that there are an infinite number (theoretically) of elastic modes, with low natural

damping, and the controller bandwidth extends over a significant number of these modes
(Figure 3). The low frequency modes interact not only with the attitude controller but
contribute directly to the deformation geometry of the structure which itself may require '.
accurate control. Proper control synthesis requires that performance criteria be precisely

formulated or the control problem i- ill-posed.
modes by not destabilizing them while controlling the low frequency modes. Indeed, no

matter where the controller roll-off frequency is situated, the infinite nature of the modal ,..
,m.

I _ _ _ __ _ _ _ 269 •.-..
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Figure 3: Flexible Structure Made Location and Controller Bandwidth.

spectrum implies that there will be modes within and beyond the roll-off region. Further.
more, destabilization is likely and almost certain to occur in the roll-off region, a siuto %:
which can only worsen for closely packed modes and low natural damping. This phenomenon
sometimes referred to as "spillover" is one of the most crucial problems faced by the control
designer. In more general terms, spillover can be viewed as an aspect of the problem of
robust control design; this will be discussed more in a later section. p

2.2 Modeling of Flexible Spacecraft

A central issue in the active control of space structures is the development of "correct'
mathematical models for the open and closed loop dynamical plants. Programs such as *

NASTRAN and SPAR are the primary current tools for generating dynamical models of
conceptual spacecraft whose structure cannot be idealized by simple models of beams, plates, -

and beams with lumped masses. -

Finite element structural programs generally provide the control designers with a set
of modal frequencies and a set of mode shapes (eigenvectors) corresponding to appropriate
boundary values (e.g. free-free modes). These eigenvectors are given in discretized form,
i.e. a set of modal displacements in the x, y and z directions at each nodal station. In ~

* some cases, modal rotations are also required. In addition, coordinates and a "map" of the
structure's nodes must be provided to allow the reconstruction of physical displacements in
terms of their modal expansions.

* ~The important point here is that, for any nontrivial flexible satellite configuration, the i
volume of information is so large that the data handling must remain entirely within the
computer and its mass-storage facilities. Development of this database, in a form usable
by control synthesis software, is a fundamental necessity for the synthesis and evaluation of
complex control which require modal truncation, actuator/sensor location and type changes,
and evaluation of system performance for parameter and system order changes. Preparation %.
of a structure for controls is a major part of the overall effort required to develop structural
control system.

2.3 Nonlinear ModelsVA

For single-body monolithic structures, the fine-pointing attitude dynamics are subsumed in
the rotational rigid body modes included in the modal matrix. When only "small" motions
of a space structure are being considered, the conventional linear structural dynamics anal- t
yses (NASTRAN and SPAR) are adequate, and the rigid-body modes are formally handled
together with the elastic modes, even though the actuators necessary to control them will
be different, in general, from those used to control elastic vibrations. When larger attitude

* angles need to be considered, if the angular rates remain small, the linear equations are
still applicable provided that the rigid-body modes are now given in terms of three attitude
angles which then constitute the first three modal coordinates. The displacements are then

do.---117
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interpreted as the linear deformations of the structure with respect to the rotated frame.

This procedure removes the kinematic nonlinearities resulting from the linear stretching of
the structure under the classical rigid-body modes. However, for large angular rates, non-
linear dynamic effects have to be modeled, even though structural deformations can still be

represented by linear equations.

2.4 Two-Level Control Design: The HAC/LAC Methodology

The two-level approach consists of a wide-band, low-authority control (LAC) and a narrow-
band, high-authority control (HAC). HAC provides high damping or mode-shape adjustment
in a selected number of modes to meet performance requirements. LAC, on the other hand,
introduces low damping in a wide range of modes for maximum robustness. Figure 4 shows
the control design procedure with integrated LAC and HAC designs.

* LAC is usually implemented with colocated sensors and actuators. However, the theory,
based on the work of Aubrun, is applicable to multiple actuators/sensors with cross-feedback

* L and possible filters [2].
HAC uses a collection of sensors and actuators not necessarily colocated. Selecting the

increase in damping ratio is realized by any number of methods including LQG with fre-
quency shaping, Q-parametrization, or H. -optimization. These methods provide roll-off

over desired frequency regions. IlAC may destabilize modes not used in the design. LAC is,

12 .
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therefore, necessary to "clean up" problems created by HAC.
The need to integrate HAC with LAC is shown in Figure 5. HAC is based on models valid

over a limited frequency region. It produces large increases in damping ratio and disturbance
rejection in the frequency range of interest. The effect of the HAC controller on modes .
not used in the control design and outside the controller bandwidth may be stabilizing or
destabilizing. LAC is designed to provide protection such that adequate damping is provided .
in the mode most adversely perturbed by HAC. With reference to Figure 5, the LAC moves
the entire uncertainty region above the zero level damping ratio.

In the next few sections, a more in-depth discussion of the blocks in Figure 4 will be
presented, in particular, actuator/sensor location, model and controller reduction methods,
and HAC/LAC synthesis. These methodologies rely on certain properties of feedback con-
trol: this raises the issue of robust control design which is fundamental to the whole design V,
philosophy of feedback, especially for LSS, and this will be discussed first. '-

2.5 Robust Control Design .'4

This section will describe how to evaluate the robustness of a control design. The evaluation 4 -
is independent of the methodology used to achieve a particular design. To illustrate the tech- ,
nique we will consider the robust control problem of vibration suppression with unmodeled ,
high frequency dynamics. Figure 6 shows the control system where P(s) is the plant transfer --
function matrix from actuator inputs to LOS sensor measurements, and where C(s) is the ' Z
controller transfer function matrix. Neglecting the rigid body modes in P(s) and assuming
infinite bandwidth sensors and actuators,

P(s) = Gk(s)
k= 1

where
Gk(s) = 1 +Mk.

Suppose that n of the modes are known. Let Ps(s) denote the known part of P(s). r" "

13 7.K ' .
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Figure 6: Vibration Suppression Control System. "--

For example, Pn(s) can be obtained from P(s) by modal truncation, i.e., the first n-

modes of P(s) are retained. One can ask the question: is this the best choice for a given

model order n? In general, it depends on what is meant by "best". For closed loop control, _ ,

it is usually better to retain those n-modes which most affect the closed-loop performance.

)low to select these modes will be discussed in the section on model reduction.

Assuming the modes have been selected, define model error as

b(s) = P(s) - P.(s)= .G.(s).
kEn.,

Observe that 6(s) is stable because both P(s) and Pn(s) are stable. Hence, it can be shown

that the closed loop system is stable if

F AMjw] < bm(jw) = I/aF [QWiw)]

where Q,(s) is given by Q,(s) = C(s)[l + P,(s)C(s)]-1 and F(.) denotes the maximum

singular value of the matrix argument. The quantity 6,,(w) is referred to as the "stability
margin", hence, the subsecripts "sinm ". (See [3,41.)

es The stability robustness test depends on the location of uncertainty. Additive perturba-
tions such as those just discussed result in the test as shown. The table in Figure 7 shows
a variety of stability margins corresponding to generic forms of model error. In Figure 7,

es P = plant, C = control, M nominal model, and 6 = model error. The stability margin is
expressed as a function of C and M which are known quantities. Examples of some model ....

error testts are shown in Figure 8 for the CSDL #2 VCOSS model.

2.6 Performance Robustness :',';;

The stability robustness tests can be extended to evaluate performance robustness to model

error. The evaluation is determined by how performance is measured. Consider the closed .. %-..

loop system %

-(t) = H(s)d(t)
where H(s) is the closed loop transfer function. Although d(t) is not precisely known, it

can be considered as the output of a weighting filter W(s) driven by "noise" w(t) so that
d(-) W(S)w(t).

?er Typical performance bounds depend directly on the frequency dependent quantity
[I(jw)W(jw)]. A natural frequency domain performance criterion is then

W[H(iw)WCiw)J S p(w)F p
where p(w) is selected on the basis of power, energy, and magnitude specifications on the

Output signals. In terms of model error, performance specification is satisfied if

where ,,,(w) is the performance margin given by

" .A" bp,(w) = fi pnGJ)/P(W)1$m(W) ,.
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and pn(w) is the performance of the nominal closed loop system H.(s) with no model error.
Then,

Then,) = aFIH.(iw)W(jw)I

which must always be smaller than p(w) in order for 6pm(w) to be meaningful. Note that
6po(w) > 6.,,n(w) as would be expected since performance includes stability. As before, the
location of uncertainty modifies the calculation of 6p,,(w).

,,
2.7 Usefulness of Stability/Performance Robustness Tests

The stability/performance robustness tests are indispensible in obtaining a realistic pre-
liminary design. They are used in a number of places in the design cycle to establish the
HAC/LAC gains, effect of actuator/sensor dynamics, and the criteria for model and con- W .*
troller reduction, which will be discussed in the next section. The tests are also invaluable l' ..8.
in establishing criteria for online system identification and control, which will be discussed -

later on in this section. ....' '

2.8 Model Reduction -

In general, the requirements for model reduction for active control of large space structures ; •
must include the following:

1. The reduced model should be suitable for control design and synthesis. It should ' .:-e'
incorporate all features critical for the selection of a feedback structure and control

gains.

2. The reduced model should accurately incorporate actuator effectiveness, sensor mea- -

surements and disturbance distribution Il].
3. The dynamical characteristics of interest in the structure should be represented in the

reduced model.

A basic methodology for model reduction which has been used successfully in ACOSS/VCOSS
and a number of other programs such as internal balancing, is now described. Other ap- ,
proaches also exist which will be discussed in the sequel.

2.9 Internal Balancing N

To determine the most important modes for control design, many criteria must be considered .,

including controllability, disturbability, observability in performance, and observability in N.
the measurements. Any mode which is highly controllable, observable, and disturbable ,
must clearly be included in the design model: however highly controllable-but-unobservable ..

modes, for example, are difficult to judge. Moore [5] has developed an "internal balancing" <."

approach whereby asymptotically stable linear models are transformed to an essentially
unique coordinate representation for which controllability and observability rankings are ,.
identical. The definition of internally balanced coordinates follows:

Definition: An asymptotically stable model

z =Az+Bu '-_ .
y =CX AN

is internally balanced over 10, co] iff

J ToeABBTeA ,= A 2
e t eeAte CTceA dt .

-- ... -where -'2 diglf 02..' -,1i> j,' -;> o,16.4
17T2
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~ 5.~-'. Notice that the balanced representation is such that the controllability Gramnian and

4, Ingnrl herqie rasomto "scrambles"thorgnlcrdaesyemuhtat*
the p i m of t states is lost. .%

However, for lightly damped structural models with decoupled dynamics, the internally
balanced coordinate representation is approximately equal to a scaled representation of the

% model states. Thus it is possible to write approximate formulae for the states in terms of
the original model. Three modal rankings are considered:

* *disturbance inputs to LOS
* actuator inputs to LOS

e actuator inputs to sensor outputs

These "second-order modes" rankings give important evaluations about which modes to
retain and validity of a actuator/sensor placement. These rankings are shown in Figure 9

jI along with LOS modal cost [6) computed using the colored noise disturbance.
A ~ Here the absolute values of the modal costs (for the VOOSS I model) are used. The

RMS second-order modes and modal costs are plotted versus mode number in Figure 9.
Immediately evident is the clustering of these modal phenomena. The disturbance effect as
seen through the line-of-sight is constrained to clusters of modes as is the ability to measure
and control the model. The coincidence of the controllable clusters and disturbable clusters
indicates a favorable actuator/sensor configuration for the problem.

2.10 Frequency Weighted Balanced Realizations

Balanced realization model reduction can be extended to finding a reduced model P(8) of
m- a high order model P(e) such that

supF{W.(j(w)[P(jW) - P.(j-))]WW)} < I
where W.(*) and W(s) are output and input frequency dependent weighting matrices. These

can be chosen to reflect closed-loop requirements on model error, vis a vis, frequency domain
stability and performance margins. For example, stability of the closed loop system with
C(s) designed from o) is guaranteed if :.

W. (a) =I

Wi(s) =C(~1+PeC()
1

18
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The problem is that Wi(s) is dependent on P.(s) which is unknown. The let out is that
its shape is partially determined by the performance specifications, thus, we can make an h L -

initial guess. This technique is referred to as "advanced loop shaping." This involves an
iterative problem which is solvable via successive approximation.

2.11 Compensator Order-Reduction
An alternative to plant order reduction is to design a high order compensator and then reduce

the compensator order. Let C(s) denote a high order compensator of order N designed to
control P(s) of order N or larger. Let C.(s) denote a reduced version of C(s) of order " j

n < N. Motivated by the stability robustness theory, view C(s) - C,(&) as a perturbation.
Hence, the closed loop system with P(s) and C,(s) is stable if

sup aW(j Cw - C(jw)}< ,

where W(s)= (I+ ss)
The weight W(s) is stable because the high order control C(s) stabilizes the closed loop ' "

system. In this case W(s) is known and we can apply internal balancing to find Cn(s). The I% .. "

disadvantage to this method is that it is necessary to find a high-order compensator. The
advantage is that once it is found, internal balancing applies immediately since the weights .'

are known. On the other hand, direct plant order reduction does not involve control design
for the high order plant, but does involve an iterative process since the weights are functions .
of the (unknown) reduced model.

": 2.12 Low-Authority Control Design '- ',,.

LAC systems, when applied to structures, are vibration control systems consisting of dis-
tributed sensors and actuators with limited damping authority. The control systm is allowed
to modify only moderately the natural modes and frequencies of the structure. This basic
fassumption, combined with Jacobi's root perturbation formula, leads to a fundamental LAC
formula for predicting algebraically the root shifts produced by introducing a LAC structural
control system. Specifically, for an undamped, open-loop structure, the predicted root shift
(dAn)p is given by

. A

where the coefficient matrix C., is a matrix of (damping) gains, and o',, denote respec-
tively the values of the nth mode shape at actuator station a and sensor station r.

Equation (1) may also be used to compute the unknown gains C., if the dA, are con-
sidered to be desired root shifts or, equivalently, desired modal dampings. While an exact -
"inversion" of equation (1) does not generally exist, weighted least-squares type solutions
can be devised to determine the actuator control gains C., necessary to produce the required
modal damping ratios. This determination of the gains is the synthesis of LAC systems. kS

For structures which already have some damping or control systems in which sensor, "p1actuator, or filter dynamics can either be ignored or are already embedded in the plant %

dynamics, the root perturbation techniques and cost function minimization methods above -
can similarly be used to synthesize low-authority controls. %" '

2.13 Robustness of LAC Systems

When sensors and actuators are colocated (i.e. a = r), are complementary, and only rate
feedback is used, formula (1) reduces to -

19 wP"
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Figure 10: LQG Control With Frequency-Shaping Filters.

which shows that the root shifts are always towards the left of the i-axis if all the gains
are negative. This robustness result is obviously based on the assumption that both sensors
and actuators have infinite bandwidth, and also that the structure was initially undamped.
Several departures from this idealization occur in the actual practical implementation of
the LAC systems. The most severe of these results from the finiteness of the actuators' ,*

bandwidths. More precisely, the second-order roll-off introduced by the actuator dynamics
will always destabilize an undamped structure. However, when some natural damping is
present in the structure, or when a passive damper is mounted in parallel with the actuator,
additional active damping can be obtained without destabilizing the structure. %

2.14 High-Authority Control Design

The HAC control design procedure can be based on any number of multivariable design
methods, e.g. LQG, Q-parametrization, H -optimization, etc. Increased penalties in the
LQG cost functional are placed at those frequencies where less response is desired. The
concept of frequency-shaped cost functionals was introduced prior to ACOSS [7].

The frequency shaping methods are useful in several areas of large space structures
control. Three principal applications are important: (1) robustness (spillover avoidance),
(2) disturbance rejection, and (3) state estimation.

2.15 Management of Spillover

Spillover in closed loop control of space structures is managed by injecting minimum control
power at the natural frequencies of the unmodeled modes. Procedures for controlling spillover
at high frequencies are usually discussed, although similar techniques are applicable for other '...
regimes. W. .

The high frequency spillover may be controlled by modifying the state or the control -.* A

weighting. Conversion to the frequency domain gives the following performance index:

R(jw)= R

The problem of robustness (spillover management) is solved by making Q and R functions
of frequency. Figure 10 depicts the modification to the nominal LQG controller. Observe that
frequency shaping adds filters whose inputs are the innovation outputs of the state-estimator ,.
in the LQG controller.

2.16 Summary

The application of frequency-shaping methods to large space structures leads to a linear con-
troller with memory. However, additional states are needed to represent frequency-dependent
weights, hence, there is an increase in the controller order. The software needed for these - -
controller designs is similar to that for standard LQG problems.

20 w
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3. Controller Design Using Q-Parametrization and H.o Op- ! .
timization

During the last decade, mathematical theories of servo design have been based mainly on
quadratic minimization of the Wiener-Hopf-Kalman type, usually applied to state-space s
models, e.g. LQG controls. However, despite the academic success of these methods, clas-
sical frequency response techniques relying on "lead-lag compensators" to reduce sensitivity
have continued to dominate industrial servo design. One reason is that quadratic design -
tends to have poor sensitivity. On the other hand, the frequency domain description has
proven to be more suitable to characterize uncertainties which arise in the plant approxima- - ."
tion/identification, and frequency domain technique usually results in more robust design,
e.g. frequency-shaped LQG can be viewed as an indirect frequency-domain design approach.

Two direct multivariable frequency domain design techniques have become popular in
recent years: the Q-parametrization technique and the Ho,-optimal sensitivity.

3.1 Q-Parametrization Design "

Consider the linear unity-feedback systems shown in Figure 11 where P(s) is the given linear
time-invariant plant. C(s) is the linear compensator, ul is the reference input, u2, and do are S

respectively the plant-input disturbance and plant-output disturbance, and Y2 is the plant **..

output.
The closed loop system input-output transfer function is given by '.-

C(I +PC)-i -C(I + PC) - P -C(I+ PC)-1SPC(I+PC)- P( + P)- (1 + PC)-1  .

(For simplicity, we drop the argument s in P(s),C(s) etc. in this section.)
By introducing the parameter (transfer function) ....

Hivu U2 Y2 'S€,'
doU Y,

HVU can be rewritten as % .

-V QP _QQ =(I -PQ)P I - PQ

Note that the closed loop input-output transfer function, for the given plant P, is com-
pletely specified by the parameter Q in a very simple manner: it involves only sums and ,
products of P and Q. "

In a typical control system design problem, the two most important closed loop transfer
functions are HVu, and IlI,.: HAUI is the transfer function from reference input u1 to -1

21 *% I '



output V2 and H,,d is the transfer function from plant-output disturbance d. to output Y2.
They specify respectively the servo-performance and regulator performance of the feedback
system S. The two transfer functions are given by

Hv,. , = PQ .. '..*and
Hydo = I- PQ.

Therefore the control design problem reduces to choosing the parameter Q so that the closed
loop system S is stable and that HV,, and H,,t4 . are "satisfactory". After the parameter Q
is chosen, the corresponding compensator C can be obtained by the formula

C=Q(I- PQ).

Hence, there is a one-to-one correspondence between C and Q. Consequently, for each -
parameter Q chosen, there is a unique compensator C which achieves the specified Q.

The selection of the parameter Q in the design process raises several questions: What are
the conditions on Q so that the resulting compensator C is realizable (e.g. proper)? What -.

is the class of all Q's which result in a stable feedback system? How is an "optimal" Q chosen?

Realizability: If the plant P is realizable, then the compensator C is realizable if and only
if the parameter Q is realizable. Note that a physical plant is always realizable.

I Global Parametrization: If the open loop plant P is stable, then the closed loop system -

S is stable if and only if Q is stable, since sums and products of stable transfer function
matrices are stable. Consequently, the class of all stabilizing compensators is given by

{Q(_ -PQ)-j Q is stable)

and the class of all achievable stable input-output transfer matrix H,,,., and the class of all
achievable stable disturbance-to-output transfer matrix H,, are given respectively by

{ PQI Q is stable) and %-%

(I - PQI Q is stable.)
These sets give global parametrization of all stabilizing compensators, and all achievable

I/O characteristics in terms of a stable proper transfer matrix Q. In other words, the class

of all "feasible" designs are parametrized by Q. .P

If the open loop plant P is not stable, additional constraints have to be added to the
choice of Q, in addition to stability and realizability of Q. For example, Q must contain
right half plane zeros to cancel the unstable poles of P. Currently, there are three approaches
to obtain global parametrization of a given unstable plant: (i) Factorization representation
theory 18]; (ii) Direct approach [9]; (iii) Two-step compensation [9].

Optimality: The Q-parametrization alone does not quantatively address the issue of op-
timal design. The designer selects Q from the class of "feasible" designs, on the basis of
the desired input-output response, a priori knowledge of external disturbances, bandwidth,

dynamic range and uncertainty of the plant, etc.
Optimal design based on the Q-parametrization and fractional representation framework

has become very popular in the research community. The Hoo-optimal sensitivity design is ,..
among the -esults available. %- .

3.2 1.-Optimal Sensitivity Design

-. The H..-optimal sensitivity design is an extension of the Q-parametrization technique to
include a quantitative performance measure of the closed loop system and achievable op-

] timality based on the performance measure. Roughly speaking, the H., design problem is

22
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the following: Given an open loop plant P(s) and a low pass weighting function W(s), find
the compensator C(s) so that the Hoo-norm of the weighted sensitivity (I + PC)-W is
minimized subject to the stability of the closed loop system.

Using the Q-parametrization formulation, the problem is equivalent to the following:
Find a Q in H,,o such that the closed loop system is stable and that (I - PQ)W is mini- .

mized. Since the weighted sensitivity function is affine in Q, the equivalent problem is easier
to solve than the original problem.

Solution to the Hoo-Optlmal Sensitivity Problem: Based on the fractional represen-
tation (coprime factorization) formulation, several solutions have been proposed and algo- -

rithms given. However, all the proposed algorithms are conceptual in nature, suitable only ,%
for simple text book example. More effort is needed towards a numerically robust synthesis
procedure.

% .

4. Adaptive Control Techniques '"

Uncertainties in both disturbance spectra and system dynamical characteristics will limit
the performance obtainable with fixed gain, fixed order controls. The use of adaptive type
control, where disturbance and/or plant dynamics are identified prior to or during con-
trol, gives system designers more options for minimizing the risk in achieving performance .
benchmarks. For the case of LSS systems where performance levels are extremely high, it -

is absolutely necessary that disturbance and plant models be equally accurate. Since data
-. from ground tests do not usually represent the flight condition accurately, it follows that an .

on-line procedure for identification and control is necessary. ,

The need to identify modal frequencies, for example, in high performance disturbance
rejection systems has been shown in Ill. Th ' deployment of high performance optical or RF
systems may require on-line identification of critical modal parameters before full control .

authority can be exercised. Parameter sensitivity, manifested by performance degradation *.

or loss of stability (poor robustness) may be effectively reduced by adaptive feedback mech- %

anizations.

Most adaptive control algorithms can be described in the form shown in Figure 12. For
example, one could select from the folowing catalogs of major areas:

23 -
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Model Control Design Adaptation
ARMAX Model Reference Gradient

State Space Self-Tuining Recursive Least Squares

Pole-Placement Recursive Max Likelihood
_________ jExtended Kalman. Filter

%

The schemes also differ in terms of update rates. Typically the outer control loop is at a fast
rtwhereas the parameters from identification are updated more slowly. Adaptive schemes

ae referred to as recursive if the identification rate is a fixed multiple of the controller rate.
If identification is used when necessary for calibration the scheme is referred to as adaptive

V~ calibration.
Although a great deal of research results are available about adaptive control and iden-rtification, unmodeled dynamics and broadband disturbances will significantly upset most

algorithms.

4.1 Adaptive Calibration:
Teuse of a "slow" adaptive control, which is more practical than recursive adaptive control

in most space applications is described in this section. It is referred to as a method of
adaptive calibration. The term "slow" means that there is sufficient time to run batch

S identification before the control system is modified. The methodology provides a guaranteed
level of performance given an "identified" model of the system together with the model
error between the system and the identified model. In fact, the methodology generates

perormnceversus model error tables (to be stored in the computer) from which the control
deinis immediately obtained. Moreover, the order of the control design is determined

strictly on the basis of model error and performance demand.

2. 4.2 Application of Adaptive Calibration:

PThe basic problem with control based on identified models is that without a measure of
'.mode'l error it is very easy to destabilize the system -particularly when the goal is high

performance - as in LSS systems. Adaptive calibration is an approach which incorporates a
measure of model error with robust control design in an iterative way so that identification r0

is performed only where it is needed. A proposed adaptive calibration system is shown in
Figure 13 with test results, using the CSDL #2 model, shown in Figure 14. The adaptive

~*calibration procedure involves the following steps:

1. The model M(s) is a 10-mode model which has been obtained from 1/O data.
2. Estimate 6(w) =model error versus frequency using FFT. This is the dashed curve in

Figure 15.

3. Using the identified model M(s) and the model error 8(w), synthesize a robust control W
(section 2). .. *

4. Calculate 6.,m - stability margin. This is the dashed curve in Figure 15. Compare to
model error 6 both plotted in Figure 16. If acceptable go to Step 6 and implement
controller. Otherwise go to Step 5.

*5. Modify filter windows, number of parameters (e.g. number of modes), or input spec-
trum and then repeat Step I to obtain new ID model. Figure 16 shows result of
identification after one mode is added in the frequency domain region where the test ey.

fails.
8. Implement controller.
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Abstract

A summary of methods of averaging analysis is presented for continuous-time adaptive
systems. The averaging results of Riedle and Kokotovic [I] and of Ljung [2] are examined
and are shown to be closely related. Both approaches result in a sharp stability-instability

" boundary which can be tested in the frequency domain and interpreted as a signal dependent
positivity condition.

1. Introduction

For a large class of adaptive systems, as well as for some output error identification schemes,
a stability analysis in the neighborhood of the desired behavior leads to investigating the

- stability of the linearized adaptive system described by an equation of the form,

- - =-czH(z'))
where 0(t)eRP is the adaptation parameter vector, z(t)c P is the regressor, and e > 0 is

the adaptation gain. The theory developed in [3,4] shows that the stability of adaptive
systems in the neighborhood of the equilibrium trajectories is dependent on the stability of %

": : this system of linear time-varying equations. System (1) for example, can be obtained as % %
a result of linearization of the adaptive system in the neighborhood of a "tuned" system,
i.e., a system where the adaptive parameters are set to a constant value O.EsZ and whose AA
behavior is deemed acceptable. Hence, in (1), 0(t) is the vector of parameter errors between
the parameter estimate at time t and the tuned value e., z(t) is the regressor vector from the 6J. J.
tuned system (e.g., filtered revisions of measured signals), and the scalar c is the magnitude
of the adaptation gain which essentially controls the rate of adaptation. The operator H

~ ~- depends on the actual system being controlled or identified and also on the tuned parameter
setting 0..

It is shown in 13] that if the zero solution of (1) is uniformly asymptotically stable (u.a.s.),
-. then the adaptive system is locally stable, i.e., the adaptive system behavior will remain in a

neighborhood of the desired behavior provided the initial parameter error 9(0) and the effect ".
V of external disturbances are sufficiently small. Although these results were arrived at using

input-output properties, local stability properties can also be obtained from the results on

"total" stability [5].

1.1 Unmodeled Dynamics and Slow Adaptation
4;. In the ideal case there are a sufficient number of adaptive parameters (the number p) such

that the tuned parameter setting results in H(s) being strictly positive real (SPR), i.e.,
H(s) proper and stable, and Re H(jw) > 0,Vw c+. Under these conditions, we have the
following known results: (i) the zero solution of (1) is stable, i.e., 9(t) is bounded but not

~-% "" necessarily constant; (ii) if, in addition, x(t) is persistently exciting, then the zero solution
is u.a.s., thus, 9(t) - 0 exponentially fast as t -, oo. The trouble starts when there are an
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insufficient number of parameters to obtain )1(s)(SI'R, as is the case in adaptive control
when the plant has unmodeled dynamics.

In this paper we will examine the stability of (1) when f is small, z(t) is persistently
exciting, and H(a) is not necessarily SPR but only stable. We will refer to this case as slow

'adaptation. -A

1.2 Approaches Based on Averaging J
.1'. ,'

In a recent paper by Riedle and Kokotovic [1], a classical method of averaging as described . .. *

by Hale [6] was applied to the linearized adaptive system. The result is a sharp stability- ,
instability boundary determined by a signal dependent positivity condition which asserts
that the zero solution of (1) is u.a.s. if

A(Z (w)c(w)iRe Hw(j)) > 0 (2)
WEO

where fl and {c(w),wefl} are, respectively, the Fourier exponents and coefficients of u(t). . :.
Condition (2) can be considered as a signal dependent positivity condition, but unlike the
SPR condition Re H(jw) is not required to be positive at all frequencies. Thus, this ,

result is significantly weaker than the SPR condition required in the proof of stability of
adaptive systems, e.g., [7,8). In order to apply the averaging theory to obtain this result, the
linearized system has first to be decoupled into slow (parameter) states and fast states. It is N
this transformation which is essential to the averaging approach and is a major contribution ,, .
in the Riedle-Kokotovic method.

Averaging has also been applied to the counter-example of Rohrs et al. [9] by Astrom
[10,11]. In this analysis, by "freezing" the parameters, the parameter and state equations are -

" decoupled thereby obtaining the asymptotic trajectories. Both of these averaging analyses
.-." assume that the system is periodic or almost periodic, an assumption that can be dispensed -

with by introducing the notion of a sample average [12]. '
In [13], the averaging approach is extended to nonlinear systems by introducing the

integral manifold which completely separates the parameter and state equations. This latter ..

approach is valid for the nonlinear adaptive system, and not just the linearized part. Related
results can also be found in [14].

Averaging methods for adaptive systems have appeared in earlier work, the most notable
of these being the averaging method developed by Ljung [2] for use in discrete-time recursive
parameter estimation. The analysis shows that the convergence properties of the estimates
can be determined from the stability properties of a related set of ordinary differential .
equations; the method usually referred to as the ODE analysis.

C In this paper we summarize the results obtained by Riedle and Kokotovic [1,13 and
show (heuristically) how they are related to the local stability analysis in [3,4] and the ODE
averaging approach of Ljung in [2]. ,

*.,.

2. Adaptive Error System -

Although it is unlikely that a truly generic adaptive error system can be formed to capture
all the nuances of adaptive systems, the SISO adaptive system shown in Figure I is offered ,"
as a good representation for the purposes of analysis. The system equations are:

e = e. - Hevv (3a)
z = z. - H,,v (3b)
v = z'G (3c) '

= erz (3d)

The development of(3) can be found in [15,161 and in [17]. In (3), e(t) E R is a measured error
signal which drives the parameter update (3d), z(t) c RP is the regressor, and 0(t) C RP is 0 6
the parameter error between the current estimate at t and a tuned parameter setting 0. C RP. .-
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, Figure 1: Adaptive error system-:- ,

" ' The selection of 9. is based on complete knowledge of the actual plant and disturbances. The
i system corresponding to this setting is referred to as the tuned system. The signals e.(t) E ,R ..

" ~and z.(t) E V are outputs of the tuned system, and are referred to as the tuned error and
' ', ,• tuned regressor, respectively. The signal v(t) E R can be regarded as the adaptive control ,.'._
',, " error. " "
' ~The operators H.,, and H,,, are dependent on 9, and describe how v effects the error and " "

~~~regressor signals. We assume here that He, and H, are linear-time-invariant (LTI) with:' .""
stable proper transfer functions H. (s) and H,,,(). This would arise, for example, when the

," plant to be controlled is LTI and the adaptive controller is linear in the adaptive parameters..-,.
i ~The stability of He,, and H,,, is a consequence of the definition of 9, as the tuned parameter . :

3 ,. ~s e ttin g . . . ; _;
' ~The operation r" depends on the choice of parameter update algorithm. We will restrict'-.;:-

mattention here to the following representatives:
.,": ""G radient ' - -.(17z)(t) = ez(t) (4) ,

A

= ~Recursive Least Squares .':
" ,',(1 z)(t) = P(t)z(t)

:" P(o) = P(o)' >0o

,v

3. Global Stability and Passivity _-

*::-: It is of interest to determine under what conditions the adaptive error system (3,5) produces

bouned couteputsin ( t, o r this boutnde iniia parmeererrors t(o as thuedsse . Thi s hatz
isan.t) E Are y tpuglobal stblt.e i tu ns ut, itd ire possiled to prothe uh a eresul and
proved thgrst:r repcieyhinl_~)E2cnb eadd steaatv oto

T(i) H,,(as) aPR with gradient (6) 0. a e efc r n

rs(oi) H ,(s.) - s sumPR with least squares (7) Ie,-.m:.:::.i
(la) t.,i, E Lco and either (8) t d-trl ihi a e

a) .m.E"flO.(,

The'''°*' stabilityofHad H, is a con c of te d of 0. ----udprm'.e ' -r "

setting. %,' - " '" . ' .* . . -"" ;, "", . . • • " • - -": """'""" ." " ' : "- - " " -% .
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i b) e., i. E L,,. and
z E PE (persistently exciting) (10) -- k-6

Parameter convergence to a constant in RP or to a well defined subset in RP, requires that

e., i EL n L,z. EPE (1

The above results can be found in [7,15,16] and in [181. Although of theoretical significance,
they are not feasible to obtain in practice. In the first place, due to unmodeled dynamics [9],
H,.(s) E SPR is practically impossible to achieve in adaptive feedback and even in some
output error identification. (This is not the case in equation error identification.) Secondly, "/ ,
when e.,E Lo. as in (10), it is required that z E PE which cannot be guaranteed in advance
since z is inside the adaptive loop. Case (11) which requires z. C PE - which is feasible to : 1% N

establish - conflicts with e., i. E L 2 n Lo.. The latter implies e. (t) --+ 0 which can only occur
for z. E PE - and where there are no unmodeled dynamics which we argue is not possible.

With these impossible to satisfy theoretical requirements, it is doubtful that a global sta- .
bility theory can be attained which relies on passivity, i.e., condition (6,7). On the practical " -
side, however, there is substantial evidence of well engineered algorithms that work without
SPR 110]. These do not work for all 0(o) and for all e., z. in La,, but rather, for restricted
magnitudes and signal spectrums. For example, if He (s) is SPR for w 5 WB. then it is
expected that the adaptive system will be well behaved provided there is insignificant exci-
tation above WBs,. The following example illustrates some of this phenomena. V"." %.

Example: Consider the model reference adaptive control (MRAC) system studied by Rohrs
et al. [9] with plant -

P(s) = 2 229 -. ,

+I (a + 15)2 + 4
reference model 3 __-_

Hr, (s) = 3
s+3

and adaptive control law

U = A9 Y + i 2r %-, ' .-=.+

The adaptive parameters are obtained from the gradient algorithm,

S= -re .... =
e = yt - H,,rer"

For this example we have the tuned error given by

e.= Her...
with -- ---' v

with 4580.2 3 w -.
Her(s) 3 ss + 312 + 259s + 229(1 + 20.1) s + 3

We also have %
458H,.(s) - as + 3182 + 259s + 229(1 + 20.1),. .

Observe that Her(s) and He.(s) are stable provided that

#. E [0, 17.03)

Since H..(s) has a relative degree of three, it follows that He,(s) is not SPR, and so global
stability is not guaranteed. L!-

Figure 2 shows 01(t) vs. 02 (t) for simulations corresponding to two selected inputs: .
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stable orbit. Figure 2 shows a blow-up near the stable orbit as well as a trajectory which
starts just below it and, drifts upward. The response to r2 t), however, is unstable in the -

sense that the parameters continue to drift and eventually 01(t) will exceed 17.03 and the
system becomes unstable. S.. %

Most adaptive control systems show the characteristic behavior illustrated in our exam-
ple. The parameter first exhibit a transient followed by a steady-state drifting. The papers
by A trbm i10igu contain many examples. In the example here, the drifting appears to
occur along a line in A2. In one case (input ri) the drift stops and the parameters settle
into a periodic orbit. With an apparently modest change in the input spectrum (2) the
parameters now drift into the instability region. Therefore, either the orbital center has
drastically changed and is now outside the constant parameter stability set, or else there is
no stable orbit at all anywhere along the R2 line of drift.
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Figure 4: Equivalent feedback representation of adaptive error system. S.
hit

In the forthcoming sections we will establish conditions under which the qualitative
properties of the drifting phenomena can be predicted under slow adaptation. Our analysis is
local and based on the classical methods of linearization and averaging for nonlinear systems. Alt

Co

4. Local Stability: Small Gain Theory and Averaging

Another way to view the system (3) under ideal conditions (6)-(11) is to arrange the system in
the form shown in Fig. 4. Here, the forward path operator is defined by the map N = -r-* v-,".,r e

such that

Z Z.+ Z (I12a)
9 = e[ze. - zH,,(z'O)] (12b) )
v = z'9 (12c) th

with i obtained from the feedback path, 'r.F
of .

Z = H-H (0'0) (13) &: .- '

Observe that N is in effect the linear adaptive system that we mentioned earlier. Clearly .
is the amount by which the regressor z(t) differs from the tuned regressor z.(t). ..

Now, let T : Z-* denote the loop-gain operator defined by (12) and V

= -H,(0'0) (14) ar.

Small Gain Theory asserts r19] that if, for some p E [1, 0o], the Lp-gain of T is less than one,
then the system is Lp-stable. Let 'jp(T) denote the Lp-gain of T, i.e.,

.,'.r ."2
"yp(T) = inf{k : 3b > 0 s.t.IlTillp < kllilp + b,Vi E Lp} (15) 1

a-
when p =2, it is possible to show that for all i E L2 ,

llV112 < C10(0)1 (16) "; ,
- ~t! .

where c is a constant independent of i [16]. Hence,
Il~~., : ....V11

IITiIIz = Il~vI (17)

Comparing this result with the definition of gain (15), we see that -12 (T) = 0. Thus, under E
ideal conditions, the loop-gain of the adaptive error system is zero!

Now, suppose that Hey(s) is not SPR and e,(t) $ 0. One would expect that small W
deviations in the SPR'ness of H,.(s) and small non-zero magnitudes of e.(t) could be toler- e

_ ated without trouble. Unfortunately, this is not quite the case. In the first place (16) holds
without persistent excitation. This means that system N (12) is only uniformly stable (in 4.

the sense of Lyapunov). Recall that uniform stability is not robust to typical perturbations.
Uniform asymptotic stability of N (equivalently exponential asymptotic stability, since N i.

13
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is linear) is robust to a large class of perturbations. Thus, a basic idea behind the use of

various forms of linearization theorems in the analysis of adaptive systems, is to insure that
the system N is u.a.s. (uniformly asymptotically stable) which necessitates that z.(t) be. .
persistently exciting. Since space limitations do not permit us to elaborate on linearization
theory here, the interested reader is referred to [3,4]. We will, however, see that averaging
imposes a natural linearization.

By restricting the magnitude of 0(o) and the magnitude and spectrum of z. (t) and e.(t),
it is possible to obtain conditions to prove local stability [3,41. The local stability property
hinges on two premises: (i) the error system trajectories are in a (not necessarily small)
neighborhood of the tuned solution, and (ii) the linear time varying system which maps
w -4 0 as given by

.= -(rz.)(t)H,(z()(.)) + (rw)(t) (18)

is Lw.-stable, i.e., there exists constants k and b s.t11o1100 < kllwll. + b. The choice of r'
comes from (4) or (5) and z,(t) is the tuned regressor. We can regard (18) as a linearization
of the update algorithm. There are several ways to establish the L,, stability of (18).

4.1 Gradient Algorithm

We first consider the case when r represents the gradient algorithm, i.e., (rz.)(t) = cz.(t)
with e > 0.

In [20], it is shown that if He(s)cSPR and zePE, then for all c > 0, w --* 0 is exponen-
tially stable, and hence, Lwo-stable. In [21], if Hey(s) = HR'(s)+sA(s) ,He(s)eSPR, A(s) is %
stable, and z. ePE then for sufficiently small e and Ilk. OO, w -- 9 is still exponentially stable, "
and hence is L..-stable. This latter method relies on loop-transformations and application
of small gain theory.

Another approach is to use averaging. In [1] it is shown that if z.ePE with the Fourier Ktm
series representation

Z. (t)~

k

* and if the eigenvalues of the real matrix

B = Za(k)a(-wk)' H. (-jWk) (20)

all have positive real parts, then for all sufficiently small e > 0, w -- 9 is exponentially stable,
and hence, Lo,-stable. Moreover, if any one eigenvalue of B has a negative real part, then
w - 0 is exponentially unstable. Hence, there exists wcLoos.t.lO(t)l --+ oo as t - o expo-
nentially fast. It is obvious then when Hey(s) is not SPR, but only approximately so, then
the Riedle-Kokotovic result provides a sharp stability-instability boundary. Note that when

*He.(s) is SPR and z.cPE we have from [201 that w -- 0 is exp. stable for all c > 0. At the
present time, averaging theory as applied here, does not hold for all f > 0 even when Hey(s)
is SPR. On the other hand, the result in [21] remains valid for He.(s)eSPR(A(s) = o)
because then c > 0 is bounded above by infinity.

S Example In this example we illustrate what happens when ReA(B) > 0 but e is too large.
t_ Consider the scalar system

:...9 = -ez.II1 (z.9)

with x.(t) = sin(.351) and H.(s) = I/(a2 + 2s + 2). In this case B is a scalar and it is easily
verified that B > 0. The simulations in Figure 5 with 0(0) = I show that the zero solution
is u.a.s. for e =4 (and for all e < 4), but is completely unstable for c 8 (and for all f > 8).
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4.2 Recursive Least Squares Algorithm

In this case we have from (5) that % 'S

(rz.)(t) =P.(t)z.(t)

When z.ePE there exists a > 0 such that%

= P(o) + z. (r) z.(r)'dr > at - I.

Thus, it is convenient to define R(t) = !.(t)- 1 forIt > 0. Hence R(t)- 1 
- tP(t) 1 _I and S

we can write (18) and (5) as,

R (z.z. - R) (1

When H.. (8) - 11 is not SPR we can now follow [2] and for t > s and a sufficiently large,
*approximate the right hand side by its average. Letting "overbar" denote average (assuming
* it exists) we have: *

t (22)

Integrating from s to 8 + T, T > 0, gives

T) - ~~a+T dt/t R 1 w-zH 6 '))()

[Re + T) - (s) wL-+(Tt/tH. z. (24) ::

[R a ) - R() 1 (i ttii .R -Beft) (25)

?A (0 -Z' - RA (r) (26)

with B = z.I-I0 zl. given by (20). These equations actually describe the asymptotic behavior

of (18) in just the same way as they do for discrete-time [2). In order to validate the ?
approximation@ in each of the steps leading to (25) and (26), it is necessary to introduce
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various regularity conditions. A complete proof can be found in 12,221. Here, as warned, we
L offer only heuristics.

Observe that in (26) asl --+ oo, RA(r) --* iZ. Thus, when H.(a) - is not SPR and

zaePE with Fourier representation (19) the asymptotes are stable if

Re X(L) > 0 (27) el

I I~ where_

L~ (7)~i~ )1 ~ (WkG(Wk'Hg,(-jWA)(28)

'6& If Re H(jwk) p > 0 at low frequencies, and if IG(wk)I is small at frequencies where
Re H(jwk) :5 0, then Re \(L) = p. Thus, all parameter asymptotes have a uniform rate of
convergence which is not the case for the gradient algorithm with a time-invariant gain.

5. Averaging: A More General Approach

In this section we will establish a general form of the adaptive error system (3,5) which is
useful for application of averaging methods. The first step is to transform (3,5) into a set of *.

nonlinear time-varying differential equations. To do this observe that if H.u(S) and H..(.9)
are strictly proper functions (a convenient illustrative, but not necessary, assumption) then
we can write

H,,Js) = c'(sI -A)-lb 14

whereH,() = D(sI - A)- 1b (29)

Re A ~ E "D E RP" with (A, b, [c D'J) a minimal representation. Also,
Re (A) < 0 reflecting the fact that H, and H,,,(s) are stable. The error system (3) is then w

equivalently expressed as
e = e, - I

z = z.- (30

i= Ax + bz'6

e=(rz)e

By eliminating the variables e and z we can reduce (30) to the coupled state-space description:

-1(t) f(t, 0, X) (31)

1* x Ax +g(t,0, X) (32)

With the gradient algorithm (4), let

L 0(t) 8 (t)
(33)

and .

f(t,e,x) =z.(t)e.(t) - Q.(t)x + c'xDx

Q. (t) = z. (t) c' + e. (t) D (34)

g(t,0,xz) = b(z.(t) - Dx)'9

With the recursive least squares algorithm (5), define:

R(t) = -P(t)-l (35)r%.%
t

and let
09(t)1 .*

6()=kcol{R(t)}) ~ =j(6

36



where the operator col(R} stacks up the columns of the matrix R to form a vector. Thus,

R-I(z.(t)e.(t) -Q.(t)x+c'zDx)

f(t,4,z') = col{z.(t)z,(t)' -z.(t)(Dz)' - Dzz.(t)' (37) S...,.

+Dz(Dx)' - R) ) "

g(t, 0,x) = b(z.(t) - Dx)'O (38) 9 _

The col{.} operator was used by Ljung in [2] to develop the discrete-time version of (31,32).

5.1 The Integral Manifold •

The basic idea in the application of averaging methods to (31,32) is to see what happens when
-1(t) is small. Essentially, 0(t) slows down and we would expect to be able to approximate
the right hand side of (31) with its average, i.e.,

, AO ((39)

where

7(0') lim f(t, -, Y(t,.O))dt (40)

assuming the limit exists. (Such is the case, for example, when f(t, 0,z) and g(t, 0,x) are
periodic in t for all bounded 4' and x). The function Y(t, 4) is referred to as the state of the
frozen parameter system, i.e., Y(t, 4) solves (32) whenever 4' is a fixed vector. To emphasize
this point we may express Y(t, 4) as the solution to the partial differential equation.

Y ~~~~ ~ ~ ~ .AY+g.t 0 ).Y..-)= 0

at_

The frozen parameter system was introduced in the averaging analysis proposed by Astr6m ,i 4N

In order to remove the approximation in (39) we introduce the integral manifold as
suggested by [13] [see [6] for discussion of the integral manifold] "%. "

The integral manifold M of (31,32) is the set,

Ml = {t, 4', x :(t-) = h(t 0 , 4(t) implies x(t) = h(t, 0(t)),Vt > to} (41)

By substituting x = h(t, 0) into (31,32), the manifold function h(t, 0) is seen to satisfy the
partial differential equation

Oh Oh
- +  (t)- f(t,4',h) = Ah + g(t, 0,h) (42)

at a- % o,°

Whenever -1(t) is sufficiently small, a reasonable approximation to h(t, 4') is given by ho(t, 4)
which is the solution to

a Aho + g(t, 0, h,)

= F(0)ho + G (0)z.(t) (43)

where the last line follows from (34) with ., -

F(O) = A - bW'D, G(O) = b9' (44)

In (42), 9 and t are regarded as independent variables and, hence, we can define the
stabilizing parameter set

D, = {0 E G : Re A(F(O)) < 0) (45) -'"

Thus, for -y(t) sufficiently small, we can refer to h(t,4') with OrD, as the stable manifold,
which we will approximate by h0 (t,O),#ED..
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An important observation to make at this point is that the approximate manifold function
h.(t,O) satisfies the same partial differential equation as the frozen parameter system state
y(t,4'). The only difference is in initial conditions. However, if OeD, then as t --+ oo we have

)- (t,) - 0 exponentially.
The final transformation on (31,32) is obtained by examining the behavior of (4, x) in

the neighborhood of the stable manifold. Introduce the error state,
i9

C = x-h(t,4') (46)

Using (46), and (31,32), we have

4' = -y(t)f(t, 4, h(t, 4) + C) (47)

.= F(P)f - .I(t)h,(t, O)f(t, 4, h(t, 4) + C (48)

where we have used h(t, 4to denote 0-(t, 0). If-y(t) is sufficiently small it can be shown that
under suitable regularity conditions we can approximate h(t, 4) with the frozen parameter

state Y(t, 4) and obtain the approximate system, 6P

W -Qf (t, 0, Y(t,' ) + C

~ = r(9)C - 'y(t)!#(t, 4)f (t, 4,7(t, 4') + C)

Moreover, if -1(t) is sufficiently small and 0 remains (moving slowly) in D. then C(t) -- 0
exp. fast. As a result, by the same reasoning as in Section 4, the stability of the asymptotic .; .
system:

wA(r) = 7A(r) (49)
where. 1

(4)=lim f f (t, 0, Y(t, -0)) dt (50)
1-o T

assuming the limit exists. The stability of (49) is given as follows. The proof is in -6].-Theorem" -

Let 0* denote a solution of

7(00) 0
and define the matrix,

Then, provided Re A(G) # 0, the equilibrium solution O'A(r) = of the asymptotic system
: ) (49) is:

(i) u.a.s. if max, Re A,(G) < 0.
(ii) unstable if maxi Re Ai(G) > 0.

5.2 Application to Gradient Algorithm
;" r.Applying this result to (33,34) with the gradient algorithm and with z.cPE and F1 = 0,

gives G = -B from (20). Since -y(t) = e > 0, we can only conclude that if Re A(B) > 0 and

~ e issufficiently small, then e(t)cD, long enough for transients to die out, which is unprovable
as yet in general.

Observe that 9. E RP such that .- = 0 does not define an equilibrium of the actual
system. All we can say is that with e > 0 small, there is a 3(t) which orbits near (to order
e) the equilibrium of the asymptotic system. We can also choose to consider i1 = 0 as
a defining equation in a candidate tuned setting. Other conditions would also have to hold
(e.g. small e.(t), etc.) which may be obtainable with proper input selection. In other words,

Z Z' the signals present during adaptation should be similar to those present during tracking or
disturbance rejection. Otherwise, the algorithms choice of the tuned setting (-'.F= 0) may
be undesirable. a

- F.



*5.3 Application to Recursive Least Squares Algorithm nJ

Under the same conditions and with the same provisions as above, G = -L with L from
(28). This time, since "1(t) = I/t -. 0 as t --# oo, we can conclude that if Re A(L) > 0, then

0(t) --# 0 as t - oo at a rate I/t. In this case, due to the presence of 1/t, the parameters 00
0(t) asymptotically approach the solution of (49).

6. Concluding Remarks

The averaging theory described here, as well as averaging theory in general, has its uses
and limitations for adaptive system. In the first place, the theory requires slow adaptation
which can be counter-productive because performance can be below par for the long period
of time it takes for the parameters to readjust. Secondly, averaging theory is a form of N %'N
linearization so that the (nonlinear) adaptive system must be initialized in a (not necessarily"-
small) neighborhood of the tuned system. On the positive side, however, we do obtain
frequency domain conditions which explain the system behavior near the tuned solutions.
In this sense, we can consider the results of averaging theory to be necessary conditions for
good performance of adaptive systems.

To obtain the heralded goal of frequency-domain stability conditions, it may be inevitable ' [-

to encounter linearization. Somewhat less intuitively appealing results can be obtained
without resorting to direct linearization or averaging, e.g., in [4,17,21]. These results arise X.4
from a combination of small gain theory and perturbation theory.
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Abstract
An approach is presented to the problem of on-line robust system identification as a means to estimate the system transfer

control design, referred to here as adaptive calibration. It is an function.
iterative approach which modifies the filter and model structure The paper is organized as follows: Section 2 discusses the
characteristics used in methods of system identification involving calibration problem and the issues in robust control design.

.0 the filtered prediction error. An estimate of model uncertainty is Section 3 addresses the problem of determining model
obtained which is then used to predict closed-loop system uncertainty bounds from system identification methods. An -r
performance with the new control if it were implemented. If example is presented in Section 4. •
predicted performance does not meet the specified performance

- the filters and/or model structure are modified to enhance model 2. Calibration and Robust Control Design
* accuracy in the frequency range required. An analysis is Inempreseted longwithan ilustativ exaple.In this section we discuss the general problem set-up for ,.
S" pedo w al aadaptive calibration in the context of disturbance attenuation.

1. Introduction The system to be calibrated is shown in Fig. I and is described
in discrete time by* "i,

Stringent closed-loop performance demands require very
accurate models for controller design within the system y(t) = Go(q)u(t) + v(t) (2.1)
bandwidth. Since the actual dynamics are not likely to be u(1) - Fo(q)y(t) (2.2)
sufficiently like those obtained from testing methods, it is of

*: practical importance to be able to identify the system dynamics where Go(q) and Fo(q) are the transfer functions of system 'P .'
-" on-line and then tune the controller to the updated model. The dynamics and feedback compensation, respectively. The function

" -. problem of on-line system identification and control tuning, v(t) represents the effective disturbances as seen at the output.

- referred to here as adaptive calibration, is a little like the story Wab cu
about Columbus: "He didn't know where he was going; when he is to be replaced with another controller which is expected to

P] arrived he thought he was someplace else; and when he returned improve performance. The controller Fo(q) can be thought of -, _
*.. he wasn't sure where he had been. And amazingly, he did it all as a controller from a previous calibration or as a "back-up"
- with borrowed money!" The moral of the story is that in order low-authority stabilizer. In a large space structure, for example,

to obtain a model from on-line identification which has the co-located rate damper are used throughout the structure to ,._:
requisite accuracy, either unlike Columbus, we need to know provide robust stability, but these being of low-authority provide %

"" where we are going, i.e., know the answer a priori, or else like low performance.
Columbus, derive a means of calibration which will In order to tune or replace the controller Fo(q) in Fig. I

0 automatically adjust the identification accuracy, notwithstanding we need a better model of (2.1) then what was used to design
our ignonce of the true dynamics. Fo(q) in the first place. What we mean by the term model is: .. .

Although we use the term calibration to refer to control (a) a nominal model of Go(q) and '(t) in (2.1) '
. design based on an identified model, we are of course really (b) a set of uncertainty associated with the nominal model.

I discussing an adaptive controller. In this case, although we limit
ourselves to infrequent controller adjustments, we ultimately face These together with

the same issues in the robustness of continuously changing (c) a performance measure
adLytive controllers, e.g., Anderson et al. (1986). constitute a robust control design problem for disturbance

" t' In this paper we show how frequency domain bounds on attenuation.
*: the unmodeled dynamics of the identified model can be extracted

from standard system identification procedures. Such bounds are
* '( required in order to evaluate the performance robustness of the The variable q is used to denote the forward shift operator, i.e.,

.. control design, e.g., Doyle and Stein (1981), Safonov et al. qs()f (,l),
(1981), and Vidyasagar (1985). The basis for the results here Scan e fundin Lung(195),(198) ad Whlbeg ad Lung Strictly speaking, GO(q) is an operator whereas the complex func.
can be found in Ljung (1985), (1986) and Wahtberg and LjungGQ) c ,
(1986), involving the use of parameter estimation methods of ion is a tansfer function.

- *Research suppored by AFOSR Contract F49620-US-C-0094.
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* Performance Measure (i) I(q) A Ii + d(q)F(q)r is stable (2.12a)
% Suppose that performance is specified in terms of average (ii) 8(o) <.,(6o) A 111(e ,)l, v V W I-xax (2.12b) .

power, i.e., it is desired that
- (iii) O(q) A F(q)§Aq) is stable (2.12c) .. ,

Umavg{9Q) A lin y2(,) (2.3a), --- , iTh function &,Q in (.2)is referedt here as th

and in addition that stability margin. The sensitivity function (2.6) can be writen as, . %

avg{uQ)) :5 1,p (2.3b) S(q) = .(q)Il + A(q)d(q)I - ' (2.13)

If 0,(w) and Oa,(i) are the power spectral densities (PSD) of This, together with (2.6), (2.11). gives the following frequency '
y(t) and u(), then (2.3) is equivalent to domain sufficient condition for (2.8) to hold:

I f "2
2: 1 0,(w)d<c4 (2.4a) ( *).) v 0,1(Q . e [-gv e (2.14a)

S0j ,,(o)do)< u2i (2.4b) *

YX _2b .40) S _ ..,J 0() < ?N(). v we (-sl] (2.14b) %

Note that w is normalized frequency which is constrained to ,
the interval I[-it.x]. Let Observe that 6(w) < 8,,(o) is necessary for (2.14) to beu() = -F(q)y(t) (2.5) satisfied, i.e., (2.14) implies stability robustness. Condition e ?'.r--'

be the feedback compensation which is to replace that in (2.2). (2.14) can be thought of as a condition for performance .

If 0 (a) is the PSD of v(t) then robustness. That value of &(o) for which equality holds in '

()= L(e J)1 2 ,(o)) (2.6,) (2.14) is referred to as the performance margin and is given by

0,(w) = lIQ(e w)ll0,(o)) (2.6b11 8,(&) = 8M,(o) (I - p()) (2.15a) ,.

where
S(q) A 11 + G0(q)F(q)]-  (2.7a) where '

€, Q(q) A F(q)S(q) (2.7b) p(a)) A matx 1( )l4 .m m  (2.15b)'(~l

For (2.6a) to be meaningful it is assumed that v() has a PSD. I l,
tUnles otherwise stated, this is a standing assuVmption whenever ho-ld i
we say that a signal has a PSD. Hence, (2.8) will hold f

Suppose that there exist functions ,Pw(o) and O4r(o)) 8() s 8,,,() V to (2.16)
such that Observe also that (2.16) makes sense only if the nominal 4

OVw) 5 o (snw) (2.8) closed-loop system strictly satisfies (2.8), i.e., if

0(W) :5 4t"(w) (2.9) p(0) < I , V Ce [-x,,t] (2.17)

ar sufficient to satisfy (2.4) Condition (2.16) can be used to evaluate candidate .'.)
compensator designs F(q). If the candidate satisfies (2.16) then -

-- the design can be implemented with confidence. If not, then
Robust Control Design (2.16) provides information as to the range of frequencies over

If G(q) and 0,,(o) are perfectly known then the which the design needs to be modified. Such information can be . .,
compensator F(q) can be designed to satisfy (2.8) by any incorporated in the next design iteration, e.g., frequency-shaped
number of methods. Realistically, G(q) and 0,,(o) may vary LQG as described by Safonov (1981), Gupta (1980), and Stein .
or are not perfectly known. Suppose we have the set of and Athans (1985). In order to apply (2.16), it is necessary o . .
uncertainty in GO(q) given by have a nominal, dynamical model d(q), the model error bound

00' Go(q) = (q) + A(q) (2.10) &((a), and the disturbance PSD 0,,(o)). It is clear that .
knowledge of 0,L(w) can be relaxed to knowing an upper bound ..-.

where d(q) is a known nominal value whereas the only on *,(a) in (2.16). The practical question to ask is how do we ?.

knowledge about A(q) is that it is stable and bounded by obtain this information? In terms of on-line tuning, can we do -

IA(e)i < 8(s) (2.11) this automatically?

In order to provide closed-loop stability for all uncertainty of the 3. System Identification and Model Uncertainty
form (2.10), (2.11) it is necessary and sufficient that (see e.g., t si w h o y id ci mhCallie and Dsoer (9821]In this section we show how system identification methods .- -
Callier and Desor (1982)) - specifically, parameter estimation - can be used to provide a I, .4

nominal model d(q), a model error bound 8(o), and an
estimate of O,(w).

-7h PSD of y(t) is defined as die two-aided Fourier tranform of the Consider the least squares parmter estimator
a...orrelation function: 6, = ar% 'N (0) (3.1a) .

JN (O) a c (,.)d"

Note that the Fourier transform of Rt) *situt if R)J) is in iI(R). a- .1 4
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where D is a subct of IK' and C/:,e) is the filtered error Note that when C(q) a I we have the equation error model,
signal dependent on 6. Suppose q.0) has the PSD given by which together with (3.1) gives the least squares solution. In this

* @ *0.W,O). Then, case the set D a IRe. Note also that filtering of the prediction
error is equivalent to pre-filtering the data set. i.e., replace

t lim 6N - arj iJ(e) (3.2s) ( ) ' U(s) " I " . }  w ith { ),,. L4 q). (), .... } ,m

J(O Frequency Domain Interpretation of Identification
avg{c(,0) . -L 1,0b The PSD of the filtered prediction error, denoted by

0/o), 0) in (3.2) is given by:

The usefulness of (3.2) is that if N is large then 6(N) is ) L(e) 0,( ) (3.1)-
approximately . Moreover, recursive methods produce ) ,(i)1, 9)120.(GQa,

estimates which asymptotically approach 6, e.g., Ljung (1985), Q€o 0) = (Ia(eh, O)l211(e', B)2 (o) + O,(o)) (3.1 1b)
(1986). where A(q, 0) is model error [see (2.10)], i.e.,

A(q. 0) = Go(q) - G(q, 0) (3.12)' Parametric Models ,- '
The results and notation of this section, which am needed in and 0,(w) is the PSD of v(t). The above expressions are

obtained by combining (3.6), (3.7), and (2.1). together with the
j- :"; the sequel, are taken directly from Ljung (1985, 1986). Assume following assumptions [see Ljung (1985, 1986):

.that 0t ) is generated from a parametrized observer or
predictor as follows: (Al) G(q) stable (3.13)

Ci t. 0) = L(q00, ) (3.3) (A2) Fo(q) = 0 (3.14)
0.,

where L(q) is a stable filter operating on the predicfion error (A3) Oaw(C) = 0 (3.15)

Ce. ) - (t, 0) (3.4) Because the plant G0(q) is stable (AI), a stabilizing feedback is

" Here 9Q, 6) is the one-step ahead prediction of y(r) based on not required (A2). It is often the case that for practical reasons,

some parametric model for the data set {y(r), uQt)} generated a feedback is present regardless of the plant stability. The
frome (2.1),(2.2),rioe., fexpression for 0,((o, 6) in (3.1 lb) is then,from (2.1), (2.2), i.e.,,..'-;

Y(:) = G(q)u) + v(r) (3.5a) ) i..), .-)(In this paper we concentrate on the simple case when no
%,u) = - F0 (q)y) (3.5b) stabilizing feedback is required, i.e., when assumptions (Al)- "

. where v() is a zero-average sequence with PSD given by (A3) are satisfied. e
0 ,(o). A typical parametric model is Suppose we have determined e e D from (3.2). We then -4

. y() = G(q, O)u(t) + H(q, O)e(t) (3.6) have the transfer functions G(q, 6) and H(q, 6). Passing the

.,N where G and H represent system dynamics and e(t) is data {y(r),uQ),r= i,...} through the predictor with 0=.• ~~gives the pradiction error -".-
' t'." "unpredictable", e.g., a zero average sequence with constant get rdin o

PSD. Hence, we have e(t. 6) = H'1 (q, 6 )[y(t) - G(q, O)u(O] (3.16) ,,.-'

At, 0) = [1- H 1 (q, e)yQ) + H"t(q, e)G(q, O)uQ) (3.7a)
" (,, 6) = Jr-(q, &)[() - G(q, O)u()J (3.7b) Hence, the PSD of sQ. 6) is,

,Co. 6) -=I-(q. 6)1[lA(e*u, 6)l2-0(o) + .(to)] (3.17)

The parametrization of (3.6) can always be selected so that the In (2.14) we computed upper bounds on 0,(o)) and 0),(w)
map (m, y) - j defined by (3.6) is stable. For example, which depends on knowledge of IA(e', 6) and ,(o). From
consider the scalar ARMAX model, (3.17) we see that it is precisely these functions which are the

A(q)y.) = B(q)uQ) + C(q)e(r) (3.8) "unknowns," ie., the function H(q, 6), 0,(o, 6), and 0.(w)
can, in principal, he computed asymptotically from the data set %

where A, B, C am polynomials in q- whose coefficients are {y(), u(,), t= l,...,N} as N -+ so. An interesting equivalent
the elements of 6. Hence, expression for (2.14) can be obtained by using (3.17) to

O(q, 8) = B(q)IA(q) (3.9a) eliminate 0,(w). By introducing the shorthand notation

H(q, 0) = C(q)/A(q) (3.9b) 4b,(o) = *(o, 6) , 6 (eu) = G(e', 6), etc. (3.18)

then and by dropping the explicit w and ei dependence, we have

[l YQ) + (1) "310') from (3.17) that
C(q) C(q) 0,, = ,, -.j(3.19)

.) Q)J (3.b Hence, the inequalities in (2.14) become,'.,.. (r, 9) A& r) - Ed "Q( (3.10b)
-C(q) A(q) 0, VP-Al~~6 (3.20a)

Observe that (u, y) -4 j is stable if IIC(q) is stable,O which is C Y- hI)l(HI l ( 
-  

' (3.20b)
* ," al ays possible to enforce. Hence, we take the set D C R In where

(3.1)as, Y(8) A (I- & 8 ,,)2[I - (81.) 2] (3.21)

D 0 a6 IRO: (uy) -o P in (3.6) is stable} (3.11) 8, 0400 ( (3.22) -',"
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Ikecall from (2.12b) that . ,,

a. 1161 (3.23) fISp y (6Y1 /q "11 dI , gE .- _

Let 14 and 0. denote the complementary frequency ranges IL I - 0-otherwise 334) ,

defined by

Do - {o * - X. X]: 6.: 80,} (3.24) M, ut of Filte Data Recrd I
- Ito a I-, ,] ) 6 Q) Calculation of the bound& in (3.31) involve knowledge of

,(w. A ) ,(), G(e'~. 6). etc. Firt of all. 6 from (3.2) .'Y
Thus. is the asymptotic estimate. What is actually available is 6M - k ,

(6a.) = + * from (3.1) for some finite N. e.g., typically on the order of ,

su N= 1024. Secondly, for any value of 0 computation of
a 0 o l( ) < , to O(, ) involves the infinite data record {e(. 0),, 1u,2...., . -.

whereas what is realistically available is {e(t, 0), t - 1.2,.... N ..
where The effect of finite dAta record on transfer function estimation

accuracy has been examined in Ljung (1985, 1986). where the
8  ,(7 following approximation of JN(0) in (3.1b) is establshed for

Y(8,)= i -(tj (3.27b) sufficiently large N: ,

Observe that V w e EL.,, it is not possible to insure satisfaction JN(8) : V. 1I(ej')EV(to, )1112 dw (3.35a)
of any finite requirement such as *y(w) !5 41'w) <.. 2x "_-

Suppose an upper bound 4,"(wo) on *,((a) is available. Also "-" . ,,
Hence, EN(co, 0) = H-r(ew, 0)(YN(co) - G(eJ, O)UN(O)] 0.35b)

01,< 41,,, , V w (3.28) with EN, yN and UN the Discrete Fourer Transforms (DFr) ,'

and it follows from (3.19) that of e.y, and u, respectively.* We use the definition that .. " -

F2 [i ( ,1 , , Vo). -X,:x] (3.29) XN(to) A DFT{x,)) = ,'c (3.36)

where

- V W E . X) Observe that the DFT is actually computed at discrete . .
, [ ,4''/4,,2  ( i-,] (3.30) frequencies, e.g., if N is even then

£ Consequently, we have

Based on the definition in (3.36), an estimate of the PSD of x(")

sup (8) = 1 Y(8&p)j V oe Eg (3.31) given finite data {x(t), t = 1... N} is

(w) IXN(o) 2  (3.38) -"'-

L This estimate of %)(o) is not always smooth and often looks e

where "noisey". Smoothing can be accomplished by introducing A .-
1:4 = (w0 C4 > (33) lag-window which is effectively a frequency domain correlation

• : / ". of IXKW(w)12 with a weighting (or window) function W(tw) [see, .

IN = (0) 00 : < 8,} (3.32b) e.g., Jenkins and Watts (1968) and Ljung and Glover (1981)].

A typical plot of Y(6) vs 8 for some ea £4 is shown in A Calibration Procedure
Fig. 2. The following steps, depicted in Fig. 3, ae illustrative of a

The expression in (3.31) together with the performance calibration procedure which follows more or less naturally from ,
requirement of (3.20) provide an indication as to the (3.31) and the parameter estimator of (3.2). ,
"goodness" of the identified model. Thus, at those frequencies
where (3.20) fails, i.e., for w e QW where Step 1: Obtain 6,W from (3.1) using the model ,,..,-

i x x (3.33a) structure (3.3)-(3.7). - %

'q rein -. ,0M I Step 2: Using the identified system
I , , (3.33b) C(q, ON), H(q, 6N) design a controller *.a ,

u(t) : - F(q)y(t) satisfying (2.17). .. 4

it is necessary to either abandon the specification or else perform _
die parameter estimation (3.2) under different conditions. For Step 3: Using .,filter the data set
example, some choices are to modify the filter L(q), change the {y(t), u(), r-1, .... NJ to obtain the sequence C(t, N)
parametric model order, or change the parametric model defined by (3.16).
structure. Exactly what the rules are for such re-identification
remains an open question, but certainly will rest on the %
experiment design criteria discussed in Ljung (1985, 1986), " The approximations in (3.35b) follows from the fact that e.. •. •
Walberg and Ljung (1986), and in Goodwin and Payne (1977). if y(i) - Tfqju(I) then IIY),'() - Tt(e')U()ll 5 f. DAN with .. J.

For example, one possible way to alter the filter L(q) is to C - 2( iup n('H))(E aT(A)U being the pulse response. ,
enforce the condition: -d t6 1,
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Step 4: Using a PSD approximation estimate along with the empirical transfer function estimate. Figure I
.,(wa. 6,) and 0.(w) from r(t, 6N) and u(t). compares the 8"6 order "true" system (dark line) with the 4'_

respectively, and then calculate sup Y(6) vs. as from order estimate (dashed line). The model eror is obviously %
significant, panicularly from about 3 to 9 Hz where control is

.3). critical.

Step 5: Check performance robustness using the test, We now compute 6,4w) from (3.22). In Fig. 9 we plot -, '

64(w) in comparison with the "true" model error between the " ...
sup Y(b) 5 'n , V (a G X, X} 8" order model and the 4 'h order model, i.e.,

Sw h gv n y b I te n at h d f IG(e i. 6#) - G(e j. 64)1. Except for some noise at the low and
ewith ie given by (3.33b). If the inequality holds for high frequencies, the estimate is very accurate where necessary.%all w , then implement the controller from Step 3. ". 'IS Otherwise, go to Step 6. Therefore, it is possible to be confident about implementing a.....

controller based on the model set G(q, 6,) + A(q).

S tef)l !t k{t). 'Mat is, if the test in Step 5 holds them is lt-

fals, either relax prformance or nuduce the model with caution before implcmenatinag a new controller. In the latter
error by repeating Stcp I. This involvcs changing the case it would be prudent to re-idcntify with filtered data, e.g.,
filter L(q) or increasing the model order or both. using the heuristic in (3.34). The results of such iterations are

* not explored in this paper.
4. Application to a Laser Pointing Experiment

In this section we obtain the model error estimate 8A(o) S. Concluding Remarks

of (3.24) using data from a laser pointing experiment. Analysis Preliminary results of calculating frequency-domain model
of this laser pointing experiment can be found in Walker, Shah, error bounds from identified models has been presented. This ..
and Gupta (1984). As described them, the objective of the calculation is critical if identified models are to be of use in con-

• experiment (see Fig. 4) is to control the jitter of a laser beam. ol design. The results show that the proposed estimates are in r ..
The single actuator consists of a proof-mass which exerts a good agreement with the true error in the frequency band that is
reaction force on the flexible beam when the proof-mass is critical for control design. Many issues remain, namely:t A

moved by an applied armature current input. A rate-sensor is (1) What are the best ways to smooth the model error esti- . ..

provided on the actuator to measure actuator velocity (required mates, e.g., "windowed" PSD;
. when very high bandwidths are used). As the flexible beam (2) What are the heuristics for iterating on the

vibrates, the laser beam changes its angular direction. A second identification algorithm when the estimated model error '. ."
sensor, a quad detector, mounted on the structural support picks is too large over some frequencies, e.g., increase model I , ? ,

up the position of the beam, as long as it is in its field-of-view, order and/or tune the data filters (these involve experi-
The laser beam strikes a mirror on the flexible member and then mental design issues of input selection, etc.);

% , is reflected back by another mirror mounted on the proof-mass
," . actuator. The resulting beam is split by a beam splitter into two (3) What is the effect of structured uncertainty on the esri- ,,- .-.% mate of model error;-.: rays, one going to the quad detector and the other going to a

screen where the jitter is magnified. The proof-mass actuator
controls both the flexible beam vibrations and the optical path tilt
and hence can reduce the laser beam jitter. The mass of the
actuator is greater than the flexible beam and therefore the References

S interaction between the modes of the flexible beam and the .,%
_ betweeini the modesfthelexiblbAnderson, B.D.O., R.R. Bitmead, C.R. Johnson, Jr., P.V.
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accurate in those frequency ranges. Figure 6 shows a Cortr., AC.26: Feb. 1981.
comparison with the "true" transfer function (the smooth dashed
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ABSTRACT

Methods are developed to analyze the transient behavior of an adaptive system.

It is shown that both small gain theory and the method of averaging can be used to

predict some of the observed transient phenomena. An important tool in the analysis

is fixed-point theory, illustrated by the Contraction Mapping Principal, which enables a

sequential application of linear analysis to the separated state and parameter equations
describing the adaptive system. It is also demonstrated that averaging theory applied

on finite time intervals can predict transient phenomena without requiring slow ,
adaptation.
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In this paper we consider an analysis of the transient response of adaptive control

systems. An understanding of the transient is required in order to satisfy practical
requirements such as those arising from constraints on tracking response and

disturbance attenuation. For example, consider an adaptive system subject to abrupt

set-point changes, e.g., step inputs. Typical system requirements are stated in terms of

rise-time, overshoot, undershoot, and settling-time. Unlike a non-adaptive system, two

sets of such requirements are needed; one set determined by the goal of the adaptive

system, i.e., when the adaptive parameters are near convergences, and another set of

requirements dealing with the transient, i.e., when the adaptive system is learning. The .

latter requirements include reasonable length of time for learning as well as bounds on

responses imposed by hardware limitations.

Analysis of the adaptive systems transient will require sharper estimates of signal

bounds and rate of convergence than currently exist. Consider the ideal case of perfect .

model matching, i.e., when there exists a constant unique setting of the adaptive

parameters which produce zero error for all inputs. In this situation although it is %

possible to prove global stability and exponential parameter convergence, the system

Istates can be arbitrarily large and the theory does not offer guidelines for adjustment,
e.g., Goodwin and Sin (1984). Local stability analysis based on the method of
averaging -- which is valid also in the non-ideal case -- provides some transient

information but is restricted to parameter trajectories which vary slowly in a convex

subset of the constant-parameter stability set, see e.g., Astrom (1983, 1984), Bodson et ,-

canarge tat helatter is not restrictive in practical system tuning when the plant is-

sloly aryng nd nitalparametrizations are close to a tuned setting. The drawback

is that although the convergence rate is exponential, it is also very slow, whereas
simulations show that onset of instability may produce very rapid learning, see e.g.,

Anderson (1983). Moreover, estimates of the convergence rate and the region of
attraction obtained from the method of averaging can be quite conservative, and hence,

do not provide a complete representation of the achievable transients leading to good
performance, e.g., Mareels (1986).
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In this paper we present an approach tthanlssotetrsitbased
primarily on the use of fixed-point theorems, e.g., Kosut and Bitmead (1986). Here
we discuss how the Contraction Mapping Principal can be used in conjunction with
other methods of analysis including small gain, passivity, and averaging. Simulations .

will be provided in the final version of the paper which illustrate the use and
limitations of the theory. The theory presented here is limited to a simple continuous-0
time gradient algorithm. Extensions as well as discrete time algorithms will be
presented in the final version.

0
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2. ADAPTIVE ERROR SYSTEM

A general structure for an adaptive system is shown in Fig. 1 and is described by
the operator equations . .

pe. Pu [w)a *~a~le)= P, 1W)po

u = - F(O) (2.2)

0 = f(0 o , e, ) , 0(to) = 00  (2.3)

The adaptive system consists of three subsystems:

(1) the plant subsystem P which takes exogenous inputs w -- consisting of

references and disturbances -- and the adaptive control inputs u into the

error e and regressor 4;

(2) the control subsystem which transforms 41 into u via the control matrix

F(0), which is parametrized by 0 the adaptive parameter vector; and .,

(3) the adaptation subsystem 11 which uses the error signal e, the regressor

signal 4, and the initial parameter value 00 to generate the parameter 0.

w . ''.a

i..

K, )at....
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The structure of (2.1)-(2.3) can describe most of the standard forms of either ...-. -

continuous-time, discrete-time, or hybrid adaptive controller. Details on this structure

can be found elsewhere, e.g., Kosut and Johnson (1983), Anderson et al. (1986). For
example, a typical form for (2.2) is the bilinear structure

u=- " (2.4)

Typical forms for (2.3) include the simple continuous time gradient algorithm
%..- . .

S= e (2.5)

or the discrete-time normalized gradient algorithm
Be E (2.6) ,

I + W- - 12

where 8 is the difference operator, i.e., (80)(t)= 0(t) - 0(t-1). In (2.5), (2.6), e---"-

and I are positive constants and I- I is the Euclidean norm, i.e., I * I = ( T)2. -

For illustrative purposes we will concentrate first on the continuous-time gradient

algorithm (2.5). A convenient form for analysis is the adaptive error system which is

formed by introducing the parameter error

(t) = e(t) - 0. (2.7)_

We refer to 0* as a tuned parameter, which is a constant vector of parameters"%.%

producing desirable performance properties of (2.1), (2.4). When 0(t) is held fixed at
0* the resulting system is referred to as the tuned system and is described by

** *

u*= - F(,)0, = - 09., (2.8) A .

The signals e., 4s, and u. are referred to as the tuned error, regressor, and control,

respectively. If P is a linear-time-invariant (LTI) operator with transfer matrix P(s),
then it can be shown (Kosut and Friedlander, 1985), that the adaptive system (2.1), "
(2.4), and (2.5) can be described in error form by ma%

ee , (to) = 0o..-.

e = e. - H,(O ) (2.9)
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where H, Ht, are stable LTI operators, dependent on Os, with transfer functions
H,(s), H#,(s), respectively. Stability of H,, Hv follows from the definition of the

tuned parameter setting. .

The system (2.9) can be shown to be globally stable, i.e., stable for all 00 e IRP,

provided that H,(s) is SPR (strictly positive real), the tuned error e,(t) is zero, and

_*,(t) is bounded. Zero tuned error can be relaxed to e,(t) bounded and decaying
exponentially fast to zero. Moreover, if 0*(t) is persistently exciting then (2.9) is .

globally exponentially stable, i.e., stable for all go e RP. These results are typical, -

but not particularly useful for a transient analysis. In the first place the signal bounds .. : __

are crude. Suppose for example that . .

H 1 (2.10) --

which is certainly SPR. Suppose also that B constants K > 0 and a > 0 such that " -

I (H.,v)(t) I < Ke-aft-0) v(C) Idt (2.11)
0 J

We then have the following bounds:

(a) 110 IL < 1 g I (2.12a)

(b) I1WO 112 < 10 1(2)1/ (2.12b)

(c) 110 - ,112 <_ (Kla)l 0o 1/(2c)" 2  (2.12c)

(d) I1P - *,IL < [K/(2a) 2 11 0o 1/(2 )1 2  (2.12d) - "

If, in addition, o*,(t) is persistently exciting, i.e., 3 To > 0, a0 > 0 such that ;....

XnJ{L 0.(t)4(t)dt} >a 0  V s> 0 (2.13) .. N

then 0(t) -0 and *(t) - 0-(t) -0 exponentially with rate of convergence no

slower than

- In (2.14)

%
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where _

= 2 To0o (2.15a) Z

TI (I+ECWo j*

D o = I1**11p. (2.15b)

Hence, for small E we have

EC as E- 0 (2.16)

Observe also that for large E the convergence rate decreases, i.e.,

-- E o as c -- 00 (2.17)
- ...' '

Thus there is a limit to the convergence rate as seen by (2.16), (2.17).

The weakness of the bounds in (2.12) and the convergence rate estimate (2.14) is ,,, ,,-

that they are conservative. It is often prudent, for example, to choose a small e. By

(2.12) we then have boundedness, but very large values can accrue since

-0 - *[L - (r)- 2 ,. likewise the convergence rate estimate is very low. Simulations _ 4,,

have verified this behavior in certain cases.'

One may well ask the question: are these results intrinsic to the adaptive system

or merely a result of the stability theory? The answer may ultimately turn out to be

both, but for now we concentrate on the limitations of theory. It is obvious that when

H,(s) is not SPR the global theory breaks down completely. We turn then to local

theory, e.g., the method of averaging. For example, from Anderson et al. (1986) it is

shown that if

N T
Re )Xmjn{ lim I0*(t )(H,,v*)T(t)dt } > 0 (2.18)

and 0o is in a convex subset of the constant parameter stability set, then for all small". ,-

E> 0, .. .*,

lim sup I )(t) I = (1 + 0(e)]O(jleIL) (2.19)
, -. ', -

Moreover, 0 (t) approaches the above limit set exponentially fast with a convergence

rate of O(E). Thus, local stability is insured. We also have local instability insured
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if any eigenvalue of the matrix in (2.18) has a negative real part. hold."'

Ile results in (2.18) and (2.19) are intuitively pleasing since they are robust, e.g.,
if ReH,,(jow) > 0 at the dominant frequencies of ,(t) then (2.15) will hold. Thus,

H, can be "almost" SPR, at least where it counts. Also, the instability result keeps

us from proposing kakimaymy excitation signals. The drawback, however, is that the
bounds required on e are conservative, and simulation results allow for much larger ,
values, see e.g., Mareels et al. (1986). Secondly, if H, is SPR then we know from
the global theory that E need only be positive, yet the averaging result requires c . .-

small. In the next few sections we hope to shed some light on these issues.

3. LINEAR ANALYSIS *:

We now consider only the prototypical ideal adaptive error system .%

- - oH(OT0) 0 (to) = 0o (3.1) .
0 =,, - G(0T0) (3.2) "

For convenience we have dropped all exogenous notation. We assume that the
operators H and G are linear integral operators which are exponentially stable, i.e.,
as in (2.11) we have for some positive constants K and a that :-

t '::"::

I (Gu)(t) I or I (Hu)(t) I s JKe- ' T)j u(:) Idt (3.3) .. ,r : ,

0 %'

Although system (3.1)-(3.3) does not at all represent all the myriad variants of

adaptation mechanisms, we assert that any scheme for obtaining a transient analysis of
this system will apply to the variants as well. Before describing some approaches, we

begin with some examples which illustrate transient phenomena.

We start by examining (3.1) and (3.2) separately, as if they were decoupled linear "
systems. Consider first (3.1), and assume that 0(t) is a given function of time. If we .. • :

take the scalar case with H = 1, (3.1) becomes, >, -,

o -
2(t)e , )(0) = eo (3.4)

Assuming 1(t) is our "input" the exact solution of (3.4) is

.5 -
%;-

j * .*

J" ",'Vt '-,- .'d; ''J '' .'P t ,', J' t 
"
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NOt 00 Oexp C. -e (r)dz (3.5)

It is clear that I0(t) 00 lo as stated in (2.12a). Suppose 40(t) is given by

0(t ae-b1 + sin ct (3.6)

where b and c are positive constants. Suppose that for t e [0, il], aeb' a > 1.
Then

0() a t fE [0,t 11l (3.7)

We then have -A: '

0(t) 0 exp{-ea2 :1I , tae [0, ill (3.8)

As time goes on *o(t) -+ sin ct and hence

0(t) -+ 00 exp 1 t - sin 2cl(3.9)
2 4c C

1 Thus, 0(t) -+. 0 xoetalya xetd since (3.6) is (asymptotically) persistently
exciting for (3.4). Observe, however, that the early convergence rate from (3.8) is ea2

whchma e onidrbl lrgrthan the final convergence rate of E/2 from (3.9)..'
It s reislythis kind oftasetphenomena which needs to be addressed.

Now consider (3.2) separately and suppose that ****-

G(s) a >.. 0 > (3.10)

*and that *

9() re ~ a a> X>0 (3.11) % '

System (3.2) becomes

=-X4.-

(3.12)
x=-(a + 0(t))x + 9(t)o4.Q) ,x(0) =0

The solution xQt) is then explicitly given by:

J (a 9(s)ds}(3.13)
FQ, 'r)= exp (a + +()d
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It is clear that x(t) -- 0 exponentially. However, x(t) may obtain quite a large peak

value, particularly if X << a. Recall that X = 0(c) as seen from (2.15)-(2.17). In

fact when X << a the initial behavior of (3.12) is like -a

- -(a-r)x-r *(t) (3.14)

If a - r < 0, or even near zero, then x(t) will initially grow until a- re- -
A

becomes negative. In fact the time to reach the peak in x(t) is approximately

tpk ln(r/a) (3.15)

Hence, the "more" initial instability (r > a) the longer it takes to turn the system

around and the bigger will be the value of Ix(tpk) 1. [The full paper will contain

simulations of those phenomena.]

We now discuss analysis techniques which can predict the demonstrated transient [

behavior for (3.1) and (3.2) separately. In the next section we will see that these .',.

separate linear analysis can be joined by applying fixed point theory.

For systems (3.1) 'consider the interval [to, to + 7. Define the sample average

matrix
4, 

.' ,'.

R = J *(t) T(t)dt (3.16)

We then have that

0r(to + 7)0(to+T) < 0r(to)[ - )R]0(0 o) (3.17)

where

., n = (3.18) . :

with

up= upIO P 1t)12  (3.19)

, The proof of (3.17)-(3.19) is omitted here but follows directly by using the Lyapunov

function V(t) = Ie(t)12 and then differentiating along (3.1). Observe that for all

C > 0, we have f le (0, 1) and also that

NN
7 ...-
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I-rIRI < 1 (3.20) " "< "

which verifies (2.12a). It is usually the case that R is at worst rank deficient, i.e.,
1 < rank(R) < dim(e), in which case it can be shown a submatrix of I- IJR of
order rank(R) is contractive, i.e., a linear combination of 0 parameters is contracting
over [to, to + 7. A similar result can be obtained for the system .

0 = -~H(Oe) (3.21)

where H is not necessarily SPR but can be expressed as H = H'+ H where H is
SPR and .4 is "small". The result is analogous to (3.17)-(3.20) but with the

exception that cQ1I1 is required to be sufficiently small and R is given by
". $T .-. .% -,

___ . "- ''

R - . (H )(H )Tdt (3.22)
a, to

An earlier version of this result is in Anderson et al. (1984). -

Now consider system (3.2) as if 0(t) had given properties. It is convenient to

define the regressor error

4t) *(t) - t.(r) (3.23) J"-" "

We then have (3.2) written as

= -G(Or( , + ))(3.24)".,--

Hence, "-z .

Q (o%,) (325)
where Q is the linear integral operator

Q = (I+ GO')-'G (3.26)..-.'

whose kernal satisfies

Q(t, 't) = G(, C) - JG(t, s)O(s)Q(s, c)ds (3.27)

It follows from (3.3) that if

.. IOQ) I < re X > 0 (3.28)

,.

IL

•-.-''

... , .-,
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then -

1 K .IL ' (e- ' e0) (3.29)

which may be obtained from (3.3) and (3.28) by ipplying the Bellman-Gronwall .. j*
Lemma. If a > > X then the peak value of I (t) I could be as large as, but no ' '

larger than,

_.OIL : KII@*IL L aKr) (3.30) .

a

For small X the term eKrA can be quite big unless of course r is small, i.e., 0(t) ." .
is small to begin with. From the previous example we saw from (3.8), (3.9) that even
though X may be of order e ultimately (3.9), it is possible during certain transients
for X to be large, e.g. (3.8) Further examples will be presented in the final paper. .

.. , .'

4. NONLINEAR ANALYSIS A

4.1 Fixed Point Theory

In this section we show how the linear analyses of Section 3, separately applied

to (3.1) and (3.2), can be brought together. This is accomplished by application of the
Banach Fixed Point Theorem (FPT), i.e., the Contraction Mapping Principal (CMP).

We need the following definitions.,'

If M is a subset of a Banach space B with norm 1II, and Ir is an operator -
mapping M -4 B, then r is a contraction on M if 3 constant o e [0, 1) such

that *.

"rxlI -y <__ l5-I- , V x,ye M (4.1)

The constant o is the contraction constant for r on M. A fixed point of %,
Ir:M -M is a point (function) xe M such that x=rx. We now have the

following theorem as stated in Hale (1969). .-"

Contraction Mapping Principal (CMP): If M is a closed ":' >\

subset of a Banach space B and 1: M -* M is a contraction

on M, then r" has a unique fixed point in M.

59 -Z
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In order to apply the CMP to the adaptive system (3.1), (3.2) we need to identify

the operator F and the space M. For example, consider the operator F defined by

( = **-G( 'T) (4.2a)
r: e

0: -~cH(OTe) ,0(0) = 0o (4.2b) I

- It is clear that fixed points of F are solutions to the adaptive system, i.e., 0 = F0 is

equivalent to (3.1)-(3.3). In fact, the solution to (3.1)-(3.3) is unique and is also a

fixed point of F. A convenient choice for the space M is

M = Ie C[O, 71:1116 < r (4.3)

* where we choose the norm on M as

--11M su IetO(t) i (4.4)

with and r chosen positive constants. We proceed to apply the CMP as follows.
First, we establish that r maps M -- M. Hence, pick any ! e M, i.e., ,

SI 0(t) I< re-  , and solve (4.2a). With 0"(t) so chosen (4.2a) is a linear system and ,
. -: the analysis in Section 3 applies. In particular, (3.29) holds. We proceed to (4.2b)

which is again linear since * (t) is obtained from (4.2a) and is not dependent on

O(t). Thus, the results of (3.16)-(3.20) apply. We then enforce II011M < r, which

. restricts the relation among 00 , K, a, X, and r so that F = M -+ M. In this case

we also obtain that F is contractive on M under the same conditions causing

: M -+ M. These conditions will be stated in the full version of the paper.
4-.-7

The choice of M in (4.3) leaves too much imprecision in 0(t). A "finer" '

choice is to select the norm on M to be,

1101M = su I WO(t) I (4.5)

where B e RPv" with Re X(B) > 0. This allows for greater possibilities in the

transient of 0(t).

60 ,%'
, .%" =

- ."60

, .%.-, ,



14

Other choices of F are also investigated. For example, consider

r: -t: 0 -Ni C7 , 0(0) =(o (4.6)
Nf,

a -( " ) -"

Again solutions of (3.1)-(3.3) are fixed points of F and vice versa. In (4.6) F maps , .

regressor error, i.e., deviations about *. Application of the CM? to F in (4.6)

yields conditions on transient behavior. These are verified by simulations.

4.2 Method of Averaging
One further possibility to predict transient behavior is to utilize the method of

averaging over finite time. This analysis is not then dealing with stability. In this .

analysis we can return to the system of (2.1), (2.4), (2.5) which in state form is

described by

J. e ID() 00 eIRP

e= CT X * Dx (4.7)

x = A(o)x + B(o)w(t) , o) = e0 WR"

(Recall that 0(t) is the actual adaptive parameter, not the deviation from 0*). To

apply averaging requires a time-scale decomposition (see, e.g., Riedle and Kokotovic

(1986), Anderson et al., (1986)). This is accomplished by introducing the frozen
system state x(t, 0), i.e., for each fired O c RP ,A%

i(t, e) = e (O)xo + JeQ()B()wz)dz (4.8) ...-.

and the state error

z(t) = X(t) - xt, 0(t)) (4.9) .

J.4

-
,=,* V..

.e, o .= . e • . .-. . .. . • .. . . ., = . . . • . . . . • . ! w . *" 
,_ L.j. / ... j; =..._e::'. .... 

.. . :, , .,.,,2'_',...: .,. ._.,_.,_ . .,.; ,4 ,"'._,_¢.,r_' _ r ,.. ,.J.,* .' 0 %''_ . .,.,,
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The result is that for sufficiently small time intervals -- not necessarily small £ -- the

parameter transient behaves like the solution to the linear system r
d
7i (9 - 0o) = £l(t, o)e-lt, 0o) - R(t, 0o)(0 - e0)] (4.10), - -

where (t, 0) and -(t, eo) are the frozen system regressor and error, respectively,

and R(t, eo) is given by

R(t, 0o) - + (4.11)

In (4.11), H, and H#, have their usual definitions, vis a vis (2.9), except now are

dependent on 0 rather than e.. Averaging analysis proceeds from here in the usual __

way and will be documented in the full version of the paper.

5. CONCLUSIONS

In this investigation of the transient properties of adaptive control systems we

have shown that some of the interesting phenomena can be analyzed. The tools for

analysis involve a combination of small gain theory, passivity, and the method of
averaging with these all linked together by the Contraction Mapping Principal.

Although each of these tools, in principal, involves straightforward calculations, it is
clear that the level of complexity of a realistic adaptive system is well beyond hand

calculation. Hence, an area for further work is in the development of software tools

which can eliminate some of the tedious parts of the analysis.

.> *.

'

04.
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ABSTRACT . from tuned signals ea. #a, ea. We first
The use or fixed point theorems Is considered for develop the Incremental fore and then discuss the
the stability analysis of adaptive systems. The meaning of the tuned signals. For brevity we

Paparticular fixed point theorems considered are the Introduce the notation
Contraction Mapping Principle or Banach and the "
Schauder Fixed Point Theorem. It is shown how the • e-
stability of the homogeneous part or the linearized X - xc -

.*. adaptive system. The region of linearization s I-
validity is estimated by considering fixed as well

. as adaptive tuned systems. Fixed-point theorems let Q(x) denote the operator
are shown also to be useful for a transient
analysis of the adaptive System. IHew(S)w I

1.INTRUDUCTION He) f,(SI (2.2)
A general structure for an adaptive system is i(#.e) %

shown In Fig.! and Is described by the operator
equations Thus, (1.1) is equivalent to the single expression

S Hew(O) a x - (x) (2.3)

- w (10.18)
6w(O) Using (2.1) with (2.3) gives

sk(e.), (0) -. (11b) x - #x. * i) - xv (2) ( 2,.

.) .. The adaptive system shown consists of three basic which may also be written as ,5. ,..
s ubsystems:

'1. The adaptation Subsystem 0 which uses the error x - 6 * FMi) (2.5) %
signal e, the regresr signal #, and the,.,
Intitial parameter value S to generate the where
parameterS.

2. The error subsystem Hew(S) which Is
parametrically dependent on S and takes the I .
exogenous inputs w - consisting of reference. 6 oQ(xe) - x( (2.6)

disturbance and noises - and produces the error a. 9(e,4)w - se o'. '.i,
signal I used for adaptive parameter andadjustment. Sew(5.1

)w - Heu(ecii

3. The regressor subsystem Hw(S), also dependent %"
on S, maps w into the regressor signal #. The Fr(x) - O(xee) - Q(x-) HW()W -

regressor is derived from measured signals and Q( 6,00)
usually Is constructed so as to represent the
states of the System model. (2.7)

The decomposition of the adaptive system shown In
(.1) is non-standard in that the plant and/or The abstract nonlinear operator representation

I controller is not explicitly visible. This (2.5) Is completely equivalent to the adaptive .,.
structure is chosen to highlight signal properties system (1.1). System (2.5) is referred to as the %
and general operator characteristics rather than error system version of (1.1) corresponding to .-
plant/controller structures and parametrizations. tuned signals e*.,Sc. One of the reasons for
A Similar decomposition can be found in Kosut and working with the error system rather than the
Anderson (1986) and Anderson et al. (1986). original system Is that robust stability of the

In this paper we will show how the Banach Fixed original system is more easily expressed with
.% Point Theorem (the Contraction Mapping Principle) respect to the system behaviour relative to the ,.%. -

can be applied to Study the local stability Ideal (tuned) behaviour. We will return to this
properties of (1.1). To apply the theorem we point later in the paper. ,
utilize the techniques of linearization about a We now establish a conceptual framework for d d
tuned system trajectory. In this paper the linearization. Suppose that I(j) Is locally

L constant parameter tuned system concept Introduced Frechet differentiable with respect to i for all I
In Kosut and Friedlander (1985) Is extended to the In some neighborhood of' 0. e.g. 11,l 6 r where
more general case where the tuned system san be an I'l is a nora on a Sanish apace S. Then. for all
idal adaptive system. I I s r. we may ect as ir there were a linear

operator L such that
2. THE TUNED SYSTEM AND LINEARIZATION oea(L)u that

*" In this section we develop an Incremental L() . I ) a j * o
version of (1.1) which couples the deviations of a, p,5

,* . -. .-~ 'C .- . .*•• ,' ,,4..A .- €.
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0 emairk: There are any number or choices for the a0a0ach space B in Theorem 2. Useful choices ' 

- 0 0 (aiitw/a e)**w Include the Lebeague spaces Lp(J). pC[1,-] With the
usual norm definitions. and the space of '

-9 00/De),. tai)3) 0 continuous. bounded fucntions CU) with norm
Ilxllc -s&up(Ix(t)l: tW). where typically J . B. R.
or J o [T). T ( -. By Introducing exponentially ,

(2.8) weighted multipliers on the operators and signals
In (2.9). we can then think In terms or a norm on

Hence. (2.5) i equivalent to C[O.TJ such that Ixllic - suplleitx(t)I:tJ) where
A is a chosen positive constant. In this way we

- 6 * L(i) * £(X) (2.9a) obtain convergence rate Information about the k.
system (2.9), and hence, the adaptive system. ".

where Conditions Al and A2 establish the local '-

Lipschitz continuity of N (x). Moreover, '.
(i) -FU ) - L(i) (2.9b) 11lI S r -> IIN(x)Il 6 K1 r'. This quadratic bound

on N(x) Is insured If' F() is Frec.et -' "'
AssumIng for tht moment that H(S)w and Q(e,$) differentiable for 1 21 S r. because then it , -

are sufficiently regular operators, then L defined follows that IIXIIT S r -> I CAx)h-T 0-1(IxI l. . - '

In (2.8) will be a linear integral operator with a The truncated norms are removed under the action of
locally integrable kernel function. Under suitable (l-L)

"
' on (x). I.e. N(x) - (1-L)M'A(2).

conditions on the existence or solutions to (2.9). V ,

we can express (2.9) equivalently by Proof: Let T be defined by the right hand side of ".8

I" -
1  

* N1(i) (2.l0a) (2.10), I.e. 'a ,,'a*,

where T,- XL + (l-L)'(x)
whr 

Observe that from (2.16), T:Br-Br.
, I.e.

- (I-L)'6 (2.10b)

1(i) - CL)M (2.100 uJTxa :5 IxL1I - K11r* I r- VxCflr

Furthermore, (2.16) implies that T is a contraction : %
The signal iL Is referred to as the linearized on Br, i.e.
erorste resonse. Intuitively. if -N(O) - 0 -.,
and I xN:i )li is sufficiently small, then Il1 11 Tx-TylJ S K~r Jhx-yll, Vx.yBr
will be small. This would establish that the

'adaptive system behaves very nearly like the tuned with contraction constant KNr < 1. By Theorem 1. ' '.P
system. This result can be rigorously established there Is a unique fixed point xcBr of T. Since
by appealing to the BanachFixed Point theorem, or x - Tx is equivalent to (2.10) which Is equivalent
as it is often referred to. the Contraction Mapping to (2.9). the theorem is proved, o
Principle. Before It 1 stated some definitions ..
are needed. Discussion

If N is a subset of a Banach space B, and T is Theorem 2 asserts that the adaptive system ,

an operator mapping N-B0 then T is a contraction on signal trajectory 1 close to that of the the tuned 4.-,
M If there Is a constant c c [0,1) such that system (r-small) if the linearized response iL is

small. Observe that the smallest value of r Is
IITx-TyJl S ollx-yll. Vxoy c l (2.11) limited by the size of IILI which depends on the

interaction of (l-L)
"  

with 6. We will see later j
The constant a Is called the contraction constant that 6 varies considerably with the choice of tuned-''
for T on N. A fixed point of T:MNM Is a point xCri signals. Also, depending on this choice, both L" -

such that x - Tx, I.e. xci Is Invariant under T. and 6 may contain Integrators and thus, although -L .6
Theorem 1: Contraction Napping Principle can be bounded, neither (l-L)

-
' nor 6 may be ."

Individually bounded. "
If N Is a closed subset of a Banach space B and Theorem 2 gives qualitative Information .? .N.
T:M-1 is a contration on N, then T has a fixed regarding the effect of the nonlinear term N(). -
point in M. 0 Condition (2.17) shows that the stronger the *...

nonlinearity (larger KN) . the smaller the allowable L _
This statement or the Contraction Mapping Iil. Ou

Principle can be found In Male (1980). Applying it Beyond this type of Information, Theorem 2 Is a ,
to the error system (2.9) gives the following little opaque because the Internal dynamics of the
result, operator is not visible. Even so. we can still

regard as good the Intuitive Idea that a small
Theorem 2: Linearization linearized error response Is essential for robust

Let B denote a Banach apace and let Br denote behaviour near a tuned trajectory.
the closed subset of b defined by Before proceeding we remark on the possibility

of relaxing the conditions of Theorem 2. This can
Br - If c I : Ilfll s r) (2.12) be done by eliminating the uniqueness requirement

and only establishing existence. One approach is .
where r is a positive Lonstant. Assume that: to use the fixed point theorem of Schauder. The "-e

AI: N(O) f0 (2.13) following theorem statement is in Hale (1980). " '

Al: 1IN(x)-N(y)ll s KNrlx-yJll, VxyCBr (2.1) Theorem 3: Schauder Fixed Point Theorem % .
If M is a convex, compact Subset of a Banach ,. .

Under hese onditons, f r)Dsatisyingspace B and TiM4M Is continuous, then T has a v~~'fixed point In M. 
-

(1) KNr ( 1 (2.15) The cost of eliminating uniqueness (T contractive r
(i) II1l S r(0-Kr) (2.16) on N) is that N Must now be a Compact, convex P. -','

subset of B, whereas in Theorem 1, N4 need only be a ., ...,
then a unique soluton i of (2.9) Duch that closed Subset of B. For example, suppose . %

B - C[O,T], the hanseh space of continuous, bounded -
lil $ r (2.17) functions or. 10,7). t(-. Then a convex, compact
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subset of N is the bounded and slew limited yatem (3.-5) Is easily Seon to be equivalent to

functions ral. i.e. If(t)l S r. Vtc[O,T] and t oe - 0.. 1(0) - st-C(O)
lr(t)-r,)I s kJL-, Vt.,1(O.TJ. We point out in
Section Ii that since T must be finite, Theorem 3 is a . Hew(oo)w - Hey(e)v
useful for a transient analysis or the adaptive
system. $ . Ho,(e)w - Hv(.)vr

For the moment, led by Theorem I and Theorem 2. *6

we will examine the linearized response. v - * V - *0go (3.6)

3. THE LINEARIZED RESPONSE where

In this section we will examine the linearized
system (210b). i.e. ll1ew(Ba) .e - oevS;(I0,VS;r

1
GW

6 L(iL) 13.1 Hev(eo) - Gevol;(1G$V;)GOv . _

In order to be more specific about (3.1). It Is Ho,(Go) - (1G#,G0)-G#w %

necessary to be more specific about the structure .
of (1.1) and the choice of the tuned signals -~(. (I.Goow-oc,3-7
oCS . +oo ,,o.0.,Oe..0,--.. *, *0. *,,
3.1 Tuned Systee In the case when e'.°,** arlse from the tuned

In the formulation so far, the choice of tuned system In Fig.2, where sCrmPc then (3.6) becomes
signal. Is arbitrary. The most common choice Is
where 8. is a fixed parameter In RP chosen as If
the plant were known, and e.s,. are generated as * ce. 1(0) $ *.So

shown In Figure 2. i.e. from ,-e-i ()•-et - Hev(e0)v ,0.,

lee! frew(hB)w 1-i(e)w JH8)'(3.2) * - Hov(01)v -A
v W - 'c o ( 3 .8 )

n this cae we have from (2.6) that The linearized system associated with (3.8) Is

Sdefined by (2.10), (2.8) is:

6 - (3.3)
(e,),) eIL " €[soeo - #il, - ea*4], IL(O) -If

%

Hence. the size of the linearized response Is el- -Hev(9e)(00L)
determined by the ability of the adaptation
subsystem to hold I near 0.. Ii. - "H'v(89)(#i1L) (3.9)

An walternative scheme for generating e,#-.,o(
is shown In Fig.3. In this Case Ce is not fixed Observe that the "inputs" to (3.9) are #*,e* and
but Is the output of an adaptation subsystem. The If. Since e 1s mall by definition, the main

d ference between the system In FiA.3 and the cause of a large linearized response Is the Initial

System in Fig.i Is that W(.) and w are ideal parameter error If - to - ao. Since Hey(ea) and
versions, or simplified models, of l(.) and w in Hv(e) are stable and e* In small, it follows that
FIg.1. For example. Fig.3 could represent an ideal the stability of (3.9) necessitates the stability
adaptive system which is globally stable, whereas of
Fig.1 contains unmodelled dynamics and disturbances
which remain unaccounted for In the Ideal case. InI - -C Of H0e,(S_)(*.) (3.10)
this case we have This system, which Is a linear time-varying system,

e Few(.);I can be analyzed by passivity methods [Kosut and
a l)reidlander (1985)], small gain theory [Anderson at )(::) w (a) 13

.
11) #l. (198.9)), and averaging [fliedle and Kokotovicw o985)). When "ev(3,) Is not strictly Passive,

which Is the normal case for actual systems, the
One of the major differences between the 6's In latter two approaches offer similar stability % "

(3.3) and (3.4) Is that 6 In (3.4) Is bounded results, namely, If t < 0 is Sufficiently mal,
wheres 6 In (3.3) may not be bounded. The reason and If '

is that 9 typically contains Integrators. However,
In both cases (I-L)'6 Is bounded, again, by the Iminavg([eHev(8

°
)*0]i > 0 (3.11)

action of the Integrators In L, I.e. the terms
Involving an/a,, then (3.10) is exponentially stable, i.e., t i ,
3.2 Adaptive System Structure FeO much that solutions of (3.10) satisfy _

Consider the adaptive Rytem of l le.t 0 (

described by 18001 S Me  0(t w(

.P Gil * I (3.5a) one eigenvalue is negative, then (3.10) i s ..
y IOew 

0,v Il-v| unstable. This means that the adaptive system is
un oc stable.,-'2

V - S (3-5b) When 0o is mall, the adaptation Is elow and
(3.9) Is a two-time acale system with 8L the slow

With adaptation subsystem given by the simple variable. Notice that If (3.11) holds, and hence
gradient algorith. (3.10) is exponentially ati , It im posible to

achieve bounded &L.iL,lL for any initial
0: c ce, 1(0) - S. (3.I.) parametrization i,. t.'us, any Initial

parametrization to will be tolerated by the
The operator 0 in (3.5a) is the *plant" and is linearized system. In the actual syatem. <. .
Cemed here to be a matrix of linear limitations ariae from the coupling between the .': ..
time-invariant operators with transfer function linearized system and the neglected nonlinear terms
C(o). Using the definition $--Be. from (2.1), as is evidenced by the restrictions on II1 ll.
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Implied by (2.16). These can be partially relaxed then move slowly and begin to approach a constant
by initially taking into account the two-time scale tuned setting. Let us first consider the terminal
system behaviour and developing a two-time scale phase. after the tranienats have disappeared. -

linearizatlon theorem analogous to Theorem 2. Such Suppose that as t--. Bett)4OscNP. where a. Is
results, derived tram the method of averaging of like the tunsed parametrization In Fig.2. In the :
Dogolyubov and Mitropolaki (1955), have been Ideal case we may have es.(t)0 and *.(t).*.(i)
developed tor adaptive systems, e.g. Astrom (1984), exponentially fast, where *.(t) IS like #*(t) in

a Reidle and Kokotovic (1985b). Bodson at &1 (1985). FIg.2. Thus, neglecting the effect of the p' .'

Anderson at &l (1986). Qualitatively. these exponenitially decaying terms. (3.15) becomes A
results assert that If t. Is a stable JW .
parametrization, then for sufficiently emall cO, -
6(t) will move slowly through the constant L - . 1L) - 0 (3.16)

parameter stability set - provided (3.11) holds - 1-" - ;
and arrive at an O(Iell.) neighborhood of a tuned L -We.-ev(,L)
setting 0,. Moreover, 0. card be determined tram %

a avg[e.aej - 0 provided e.o. has an average value. L " Wo - 110,0 )(Nii) P %

where . % .

Note: In general, the exponential stability of the .a-
a' linearized system will insure the contraction 

6
e Hew(L.)w - -

property required In Theorem 2. How to ensure . _"_.

an exponential atablity in the linearized 14 - Hw(j.)w - How(i.)w (3.17)
system is not completely solved, but at present
it can be ensured trom passivity, small gain. Since Hev(Oa) and Hfv(i.) are stable LTI operators '.
or averaging analyses, see for example Anderson the stability or ( .16) and (3.15) depends on the "
et al (1986). The interesting aspect of the stability of .'P....
contraction (fixed-point) argument is that the
mechanism for the contraction need not be 4L - - .iev( ,)(j;IL) (3.18)! specitied. S

which is precisely the system In (3.10). and so the %
In the case when eo,#.,e. arise from the tuned methods o analysis discussed after (3.10) also

system In Fig. 3, then (3.6) can be written as apply. To reiterate, the main difference between

(3.15) and (3.9) is the input magnitude. Hence.
t - e 

6
e Hev(l-)v IliLIJ Is much smaller in (3.15) than In (3.9). and

so the limitation on linearization validity as %
0, " *e - Hov(Se)v expressed in (2.16) is more easily satistied.

v - *I 1. TRANSIENT ANALYSIS
The drawback of carrying out the analysis of :%-N

- c[#e-*e. 1(0) - 0, (3.13) the error System described by (3.13) is that the
properties of the error signals i.j. depend on the

where 6e,6 are given by (3.14), I.e. properties or e.,#*,Gt as generated trom the ideal
adaptive system In Fig.3. Although a global

6e - He(9e)w - lew(G-) analysis of such systems is available (see, e.g. .%
Narendra, Lin and Valavani (1980), Kosut and J 

% %

do . How(gE)w - kow(e.) (3.14) Friedlander (1985)] the results are qualitative and
the signal bounds are coarse. Thus a detailed - ,4

The linearized systems associated with (3.13) as description of the ideal system behaviour is not ,..
defined by (2.10). (2.8) is: available. Since the averaging analysis referenced

in Section 3 can describe the system behaviour In . r

CL - 6 e - Hev(0e)(40L) some detail for small 00 with stable Initial N
parametrizations, it follows that a transient

LL - 6- - H$006)(001.)  analysis of the Ideal system (Fig.3) is needed for
L-He(iLother initial parametrlzations. This Includes both ..

aL - cEOL - 6e40l. 3L() - 0 (3.15) stable and unstable Initial parameterizations. At ,
the same time we need a transient analysis when c

Comparing (3.15) with (3.9). the operators Hev(e), is not necessarily small, or as small as required ..
H() In (3.15) are linear and time-varying, by averaging theory, or when c switches from large
because 0. is time-varying (Fig".3), whereas in to small values, e.g. as In recursive least squares
(3.9) the operators are linear time-invariant with a constant torgetting tactor. In this letter .. .
because es Is tixed (Fig.2). Another difterence is case the adaptation mechanism can be written as In
that the "Inputs" In (3,15) are usually Ljung and Soderatrom (1983),.a
significantly Smaller that In (3.9). In (3.15) the *.- -

Inpats are 6e,6# from (3.11.), whereas in (3.9) the S -R'geI in, ate are Srees and go. Certainly #se is small c (#O'-R), R(-) -R(-)" > 0 (1i" 'because a* Is mall. Also, 6e,
6
# can be small If

the Ideal system (tig.3) is not significantly Here C is mall but the choice of R(O) - (a/e3i - p_
different trom the actual system (Fig.2). However. with large a > 0 results In an effective large
the Initial parameter error be can be quite large initial gain *1. Other schemes can also be aa nd. AS Already discussed, can limit the region of . .,"
linearnzaLion validity, e.c. (2.16), wherein envisioned when c in (3.5c) changes size depending

heres In on the size of e(t) on some measure. e.g. lell ,

(3.15) the effect of 1. as an input is Subsumed by over some time window [t-T,tJ, etc.the linearization about the tuned trajectory ot the The Contraction Mapping Principle (Theorem 1) " -
Ideal adaptive systen, (Fig.3). can, In principle, be applied to the transient

The sability 0nalysis of (3.15) proceeds in analysis problem. Suppose that the ideal system '4P. .0..
tuch the same way 55 the analysis to (3.9). Two (Fig.3) Is given by
phases ot the analysis can be distinguished. There
Is first a transient phase, during which 0. Is not to -€60ito . 10() 6 5(0) - i.
necessarily moving slowly even If c is small. For
example, when the initial parametrization Is near
Instability it is quite possible that the behaviour "
oa #. is erratic - Such behaviour has been seen in e, 0 1..') -. ,
simulations. After the transient phase. S. may
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The notatifln Is a bit swwrd. but as - *.-@. wher.' foremaost among these IS -i. d4,u ICe f tu. q 0
Go is tht terv tioe-varying estimate ile i16.3; in i1gaa. Twu particular natusa h ilves for I

ia ti f. aed f ,i value or owt, lch so - D a sigal a as o advanc. . which have respective ..
is the final regresco function when Go - s. in advantages. Oiter o fects are such th.ng as % %ordcr, tO utll|ze Theorem I to establish the aen-itIvlty or t1W o,t rolled plant to pbrmm~et-P 'r

transient behaviour of (4.2) it ts necesaary to variations about $e (einected With the Va. diLy of
identify the operator T and the closed space 4. lir,varizsation). .. etual ma~r-iLude Ohosen for the Am
For example, one choice is to defin TI as the gdin t (refieLLing the trad- off between

mapping **O defined implicitly by contraction oonstsnt/exponentla
,  

degree or
I@tatiiity Iad perturbtion maglnitude. oh.Ice of ,,]

9 -.. *., *(O) -(O)-ia reference saignals, etc., which reriac the . .P
Influence of the actual plant, Gpeo;fied . itrol a. "

(-. - (1.3) objective and law, and specific adaptation rule on 6'
the behaviour 0;' the =omplete adaptive system. Our

The set M can be chosen as thesis is that 6he anxysis, via e.g. FPTs. of the

H - 1GcC[0'T]: II*-0MII S n. 68(t) eteem(0) signal-based operator formulation depicted InWFigure 1 is a ,.rticularly natural nd flexible
( .4a) approach to M'i analysis Of robust adaptive

co,.trol. This *.-chnique provioa cunsiderable
with norm insight Into the q, .IitaLJe issues implicated in

achieving robust adaptiv control. The
; riM -i sup If(t)i (4.b1) quantitative Issues require very such more specific

tc[O,T] site information (Poubell et &I.).

where BcRPxP with el(B) < 0. The relationships REFERENCES
"* between BT. and n are critical in the transient

and will be discussed In the presentation as Space Anderson. B.D•O.. R.N. Bitmead, C.R. Johnson Jr.
In the paper is limited. Note also that the P.11. KOkOtOVIC, R.L. Kos,,t, I.14.1. llareela,~transient analysis can be carried out by appealing L. Praly and BaD• Riedle (1986). Stab~ility of =
to the Schauder Fixed Point Theorem (Theorem 3) Adaptive Systems: Passivity and Averaging I

where the Space H above is modified so that a is Analysis, to appear. KIT Press, Cambridge. Mass. J.

slew limited, I.e. Jo(t) - O(I) s kit-fI.  r I?
Vt.ic[O,T]. Then N is a compact, convex subset of AsLrom, K.J. (198). "Interactions between
CCO.T] as discussed after the statement of Theorem excitation and unmodeled dynamics in adaptive
3. In this latter ase we are only able to control". Proc.23r0 IEEE Conf. on Dec. and Contr.. -"• . ~~establish existence. however, if the map T is Las Vegas.'NV, 1276-1261. ' @.,,

locally contractive on EO.T]. then uniqueness is V.
also established. BOdson, H., S. Sastry, B.D.O. Anderson. I.M..

Mareels, and A.R. Bitmead, (1986). "Nonlinear
averaging theorems and the determination of -- -

CONCLUSIONS praeter convergence rates in adaptive control". .. '
Two fixed point theorem (PPT) on Banach spaces Systems and Contr. Letters, to appear.

have been presented alongside an operato-"
formulation of adaptive control in terms of signals Bogolyubov. N.N. and Y.A. hitropolskil (1961).
0.4.e - collectively denoted x. The Bansch spaces Asymptotic methods In the Theory of Nonlinear ,
under consideration are various function spaces Oscillations. Gordon and Breach. New York.
.x(t):tcT) for T being the time-index set and le K 1 , i y r a ui
Compact subsets in this space correspond to Hale, J.K. (1980). Ordinary Differential Equations ..
€Collections of neighbourlng (under the appropriate Kreiger, Holaban, FL, originally published (1969),
norm) time functions. A fixed point of the Wiley (Interacience). New York.
operator equations of adaptive control Is
identified with the complete time history of Kosut, R.L. and B. Friedlander. (1985), "Robust
x(-.,Ge) for the adaptive control problem. The adaptive control: conditions for global stability"

.

role of the FPT's is to allow derivation of IEEE Trans. on Auto. Contr., AC-30(7):610-624.
functions of time to nominal, well-behaved Kosut, R.L. and B.D.O. Anderson, (1966), "Local

• '. trajectories *e,@e,ea. stability analysis for a class of adaptive
S 'j.. The formalism of appealing to these FPTe systems", IEEE Trans. on Auto. Contr..
ja dictates that a formulation such as (2.5) is AC-31M1):86-9.

achieved for an error system. Our approach to this
is to involve a linearization about our nominal Ljung, L. and T. Soderstrom, (1983), Theory andvalues. Local contractivity of the nonlinear Practice of Recursive Identification, MIT Press,
operator equation Is Implied by exponential Cambridge, Mass. % ..
stability of the linearized adaptive control

problem. This implication Is at the very heart of ftledle, B.D. and P.V. Kokotovic (1985b). "A
our method. Smallness Of the additive operators stability-instability boundary for disturbance-free C.*-" .

-due to unmodeled dynamics, linearization, etc., Is slow adaptation and unmodeled dynamics". IEEE '

• ithen Invoked to prove the good behaviour o the Trans. on Auto. Contr.. AC-300:027-1030.
adaptive control system via the FPT.

It Is clear that there are many aspects Poubelle, H.-A., N.J. Wood. R.L. Kosut and R.N.
affecting the quantitive application or these ideas Bitmead, "Floating-point theorems for stability

Should anyone ever deem this appropriate - and analysis of adaptive control", under contemplation.
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ABSTRACT**%*s

J~, .

The rate of parameter convergence in a number of adaptive estimation

schemes is related to the smallest elgenvalue of the average information

matrix determined by the regression vector. Using a very simple example, rj

we illustrate that the input signals that maximize this minimum eigenvalue

may be quite different from the input signals that optimize more classical .,'

input design criteria, e.g. D-optimal criterion.

Key words: Exponential convergence, persistence of excitation, experiment

design E

.:.
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Listen: The concept of "persistently exciting" (PE) signals has

invaded the adaptive systems literature at an exponential rate. Currently,

many papers on adaptive estimation or adaptive control contain long

derivations proving that there exists some T>O, some ta)O, and some c>O,

0>0 such that a certain regression vector O(t) satisfies the following
~~~condit ion,..!

condtionX > J (T)*T(T) dr ) al for all t)t o . (1) '.,.T,
t" "

". This is the celebrated persistency of excitation condition. The regression

vector 0(t) can take many forms, depending on the problem, but the -

following form is typical:

,. , T(t) = u(t) u(t) ... u(n-1)(t) y(t) y(t)...y(n-1)(t)3

S(s+yn- (2)

We have assumed a single input single output (SISO) system for simplicity,

with input u(t) and output y(t); y is a positve constant and n is the order . A

of the system.

It is beyond the reach of this short technical note to dwell on

the many occurrences of the persistency of excitation condition in adaptive -

estimation and adaptive control theory, but for those readers unfamiliar

* with this field let us just say that this condition is often appealed to to

establish the exponential convergence of a linear time-varying error%I
system. This insures the exponential convergence of all internal variables

to their desired values in the idealized case (constant system, exact model

matching, etc.) and their boundedness in certain non-ideal cases

(time-varying parameters, unmodelled dynamics, etc). And so it goes.

The simplest and most informative occurrence of the PE condition N -

is in the analysis of gradient algorithms for the estimation of a parameter

vector. The error equations have the form

i(t) co(t)e(t) (3)
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where 0(t) is the parameter estimation error, C)O is the adaptation gain, P'r

0(t) is the regression vector and e(t):-$T(t)e(t) is an error signal. it P

can be shown that, subject to * satisfying (1), (3) is uniformly %"

exponentially convergent to zero. Further, if additionally C is small -

(actually CT<<]) then the convergence rate of (3) is bounded below by

k C )min(R) + O(C
2)

where 71
T .

R lim 4 1 Q)TTd0 o

assuming this limit exists. That is T 7

I0(t+TiI ( K.ekJ.(t)J

for all t and T and some lK<. fixed, with k being approximately linear in

C [ , 2 , 3 ]. ..

One is then drawn to ask how to maximize the convergence rate of the

error system (3) by manipulating designer variables - specifically c and.

In most adaptive situations the algorithm gain e is constrained to be small

relative to the regressor magnitude by the requirements of noise rejection

- the variance of the parameter error in adaptive filtering is typically

proportional to C04 [4) - so that the small c assumption concurs with

engineering dictates. The meaningful subproblem then is: given that c is

already small, how can we best choose 0 to achieve maximum convergence rate -

or, more fully, with 0 determined by (2) how should we choose u(t)? -

Our aim in this paper is not to develop broad new frontiers in the

robustness of adaptive systems, on which entire books could be written (1),

but rather to analyse critically the PE condition itself with a view to i" '

answering some of the practical questions raised above. The overwhelming -

body of work so far has been algebraic in nature in establishing conditions

for the regression vector 0 of some particular adaptive system to satisfy

(1) for some a and P. Our discussion above shows that it makes good sense .3

to keep CM (or C) small, and that, if CPT is sufficiently small, the

73 4 -
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convergence rate is proportional to ca. It follows that it is desirable to

generate regressors *(t) that will maximize a and 0/g. The question we

p want to investigate is: "How can we achieve this by a proper choice of .

This is clearly an optimal input design-type question. Input design

was more fashionable a decade ago in the system identification literature,

where persistency of excitation also originated. However, most of the

effort was aimed at maximizing the determinant of the information matrix .,'. -
'-. ..:,.'',-

(this is called D-optimality), rather than its minimum eigenvalue, or the

inverse of its condition number. In this note we examine the very simple

case:

( H(s) b , y(t) H(s)u(t)

ly(t)l s+a

and we solve the optimnl input design problem for three different criteria. .

We seek the input u(t) that maximizes, respectively, Xmin(R),

S min(R)/Xmax(R), and for comparison purposes, det R. Given the connections

we have established with the convergence rate of an adaptive algorithm, we ".,

shall show that maximizing the determinant leads to a rather poor input

design. The main reason for its popular use is probably the simplicity of

computation of the optimal input.

Some of these issues of experiment design in an adaptive systems z.

context have been raised before [5) simply to emphasize the connection.
-r-

Here we stress the unexpected difference between adaptive experiment design

and optimal off-line experiment design. .'-'

One reason for our interest in this question arises from experimental
I;OP

I, attempts to generate PE signals for simple linear systems, with an adequate

"richness" of the regression vector 0(t) leading to a particular minimum

convergence rate of the error variables. It is often thought that only an

academic researcher with a very twisted mind could generate signals that

will violate the PE condition (e.g. try u(t) cost 2 going through a low . .
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-6-
pass filter). As it turns out, the problem is not to 

generate a (t) that

satisfies (1) for some a>0. but to obtain an a that is large enough to . %!

produce a reasonable convergence rate for the adaptive algorithm. In other

words: How does one turn exponentially slow convergence into exponentially

fast convergence? Finally, we wish to mention that we are by no means the : .
first to discover that exponential convergence can be exceedingly 

slow, and

some authors have conjectured that the slow convergence was probably due to

a poor choice of input signal (see e.g. [6]). Given the practical

importance of the question we raise, it is surprising that almost no ;

attempts have been made to answer it. The purpose of this note is to give .',

some very preliminary answers based on the analysis of the simplest .*

possible case. We believe that our results provide a lot of insight, at . ,

least for us, which may help crack the more general case.
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~~~~2 LEL...AhfLI GRATJA*

In this section we consider the situation of a two dimensional e

regression vector:

0(t) = (u(t) (Hu)(t))T ; t C IR+  (2.1)

consisting of the input u(t) and the filtered signal (Hu)(t) - where R is a ,

strictly stable, causal, linear time invariant operator with transfer

~~~funct ion "

' ".: I(s) = b-b- s C, a>0 (2.2) .z

This is typical for the adaptive identification or control of a first order

plant. The design variable is the input u(t), which we want to select so

as to guarantee "optimal" performance of the adaptive system. Under the

mild assumption that the input allows the definition of a power spectrum

[1) this boils down to investigating the properties of the matrix:

T

I R = lim (t)*(t)Tdt (2.3)

", 0

The input's power spectrum is defined as -

S(w) = f r(T)eJIrdr; w C IR (2.4) ..

4-

4 where r(r) is by assumption Fourier transformable, and is defined via

Lopr(T) =lim u(t)u(t'T)dt: T,a C 2
Ttos

where the limit exists uniformly in a (for u(t) defined on R,

-, )min(O,- ')). Under mild conditions the spectrum uniquely determines the

" i nput..%

e. g. e
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Obviously (2.5) and (2.2) imply the existence of R (2.3), moreover R Is %~

given by: .

R(2.6)
40 4.

jSiw)ReH~ywbadu J S(W)IH(jW)j2dw .. '

where in this case ~

ReH(jw) (2.7)

IH(jw)12  a 1(2.8)%

We compare the following three input selection criteria:

Selection Criteria:

Over the class of input functions (u(t), teR+), which have a power

spectrum (as defined in (2.4)-(2-5)) and which satisfy the constraint:

48S

0 S(W)d, 4 1 (2.9) ,f% A

maximise, either '

or

(C2) )min(R)

or

Solution:

Define o

77 Al



i. 7 - . . . ..1

e 4.
.. -,7 + I.
=4f (2.10)

and

a.

Surprisingly, we have that-N-

M( ) S ()di (2.12)

and

,: Te o0 t optima (2.13)

Therefore, the optimal input functions acording to (Cl) or (C2) satisfy

(2.9) with equality, whilst for (C3) the magnitude of the total input power

is immaterial. Consequently, the optimal inputs are characterized as:

Cl-optimal: S - *: S d = 1 (2.14)

f S (W)

C2-opti al: f S() - - -Z d - at f S(() = i 2.14)

_ : - a- + 1 . .8T

C3-optimal: S(W) . d= ag:- S(r)d A 4 1 (2.16)-. -* _ ,.,

a. -+ 1 -40 0.. ~

where the 4,c(O) maximise respectively detM(a), I and

-% XminM(*)/XmaxM() over ow(0,); and A is any number in (0,11.

t This matrix M should not be confused with the M matrix of Poubelle ,L,-

-* " et.al. [6].

78 ~4
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After some simple calculations, we arrive at:

af = 1/2 (2.17) --

717 (0,) (2.18)

a2

= 1 C(0,1) (2.19)
2--1
a2

Equations (2.14)-(2.19) characterize all "optimal" solutions. In order to

get some more insight, we verify whether there exist optimal inputs of the

form '

u(t) = W2 cosw*t, t C R4, W* C tR+  (2.20)

with power spectrum: -

S(w) =(C(.-*'+6(ww*)) (2.21) Z'

Solving for w* we find respectively for Cl, C2 and C3: -

W* a (2.22)

a(,+ )2 (2.23)

b a(22)% (2.24)
a 2

F'or this type of input (2.20) we collected in Table I the relevant

quantities (det R, ,min(R), Xmin(R)/Xmax(R)), as a function of b and a. In

Table 2, the same quantities are displayed for b/a = -.

For the purely sinusoidal input u(t) (2.20), the dependence of the .

determinant of R on the frequency w is displayed in Figure 1. (Notice that -

the determinant is normalised by the D.C. gain squared.) The minimum .

eigenvalue and the condition number are displayed as functions of frequency X.

respectively in Figure 2 and 3. The full line corresponds to a D.C. gain

of 10, whilst the dotted line correponds to a D.C. gain of 1.

I..
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Table I:-

Criterion W*det R )nin(R)

. *V4

4 2-

C21 b/~i 2 2 b2 -
*l aSM. /Zlb.) 2

C3 ~ ~ b b2 b31-2 -- 1 3- *-*
2(2+l222l)(-+)J++1

Table 22(..Gin 1 *
v 4

C2 a/ =+2

1179 3--T 2-4,T
(4+-6 4~:~a

4 2 b4

V b2 b: b. (b2 /45-b

aW+6a7,5
a/ 2 (3 6 1

b4. 2 * -T -T+,-

C3~*~ 26bb

-2 7 -b-2- 2 2( -- 3;..2+
(2az71 37+) + 1 + T,"+ 6~ II~. .a

Table2: (.C. Gin 1

l a - 8Z

2 25 5



3. DISCUSSION

Consideration of input sequences that maximize the minimum eigenvalue ,' '.'

of R (as in criterion (C2) of the preceding section) is encouraged in the

introduction. This point is argued persuasively, and with more detail, in q% ,

[5]. What is not examined in (5] is the difference in the subsequent input ,

choice relative to the more common objective of determinant maximization

[8]. As stated earlier, the purpose of this note is to draw attention to

this difference via examination of a simple example.

1. The most immediate observation is that maximizing the minimum

eigenvalue of the information matrix yields a different "optima]" input

sequence from the one derived by maximizing the determinant or the

ratio of the minimum and maximum eigenvalues.

2. In the first order example of Section 2, the frequency 4* of the

selected sinusoid is the breakpoint (or 3dB) frequency of the plant in ,.

(2.2) with determinant maximization; while W* is larger for minimum

eigenvalue and minimum-to-maximum eigenvalue ratio maximization -

objectives. In fact, as the D.C. gain (b/a) of the plant increases, so

do the selected input frequencies for the minimum and minimum/maximum '. .

eigenvalue maximization criteria.

3. One interpretation of the tradeoff inherent with wt selection for '.

minimum eigenvalue maximization is its tendency to make R in (2.12), or .

equivalently M(a) in (2.11), equal the identity matrix by attempting to

keep the plant gain close to one while simultaneously attempting to 7

achieve a 90" phase shift in order to null the off-diagonal terms on

average. Table 2 indirates the compromise between these conflicting v
objectives when b/a = 1. This interpretation also explains why the

input frequency that maximizes XminR) increases as the plant D.C. gain p.

increases.

4. We should also note the nonuniqueness of the "optimal" .u, unless, as in

our example, the input power is constrained and (u) is assumed to be .
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composed ~ .of a~~- nube o snuois We refer to [8, Chapter 6] for

further comment. .

5. One extension of "optimal" input selection would be to incorporate a

measure of sensitivity to imprecisely known plant parameters. Such

plant model imprecision is actually the motivation for identification

procedures and the associated input selection. The exam~ple in Section

2 clearly indicates that the "optimal" input, by the various criteria,

is a function of the "unknown" plant parameters.

% .~

6. We note that in this example the sensitivity of the Ami design 1;;
criterion is better than for the determinant criterion as is clear from

Figures I and 2. Further, for all three criteria the penalty for using

higher than optimal frequency appears less than that for using a lower

frequency than optimal, and the sensitivity for the X~min criterion in

this example improves with increasing D.C. gain. This criterion is the

one of prime interest for the convergence rate. .

Finally, as discussed in [51, optimal input design questions are

perhaps better posed in an adaptive estimation context than in an off-line

identification situation. This is because, as the adaptive identifier

learns more about the system, the input signals can be adjusted according

to the relevant criterion. The insensitivity to imprecise knowledge of

system parameters is then clearly advantageous and of relevant concern.

4. CONCLUS IONS

We have argued that, in the case of slow adaptation, the smallestM

eigenvalue and the condition number of the average information matrix

2. determined by the regression vector should be considered as input design

criteria in order to maximize the rate of exponential convergence. We have

then performed this optimal input design in the simplest possible case,

which allows a complete description of all optimal solutions. One should

82



~~14Z

be very careful in extrapolating the conclusions of this simple example to

more general situations, but we believe that the main merit of our note is

to draw attention to this problem because it follows from our analysis

that:

1. The optimal inputs that result from our design criteria are quite

different from those obtained using the classical D-optimality :~
criterion for optimal* input design in off-line parameter

identification.

2. In some adaptive control schemes it is presently being advocated to ~

concentrate the input signals in low frequency regimes in order that an *1#

average signal positivity condition (related to strict positive .

realness) is achieved. The results here indicate that this may cause.

an attendant decrease in the le'vel of persistence of excitation. -

Given the practical importance of optimizing the rate of parameter ~ V.

convergence, and given that this preliminary analysis points in a direction

opposite from presently prevailing ideas, we believe that this problem

deserves much more attention.

* "Nyuk, nyuk, nyuk" -Curly Howard

17.

.
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STABILITY THEORY FOR ADAPTIVE SYSTEMS:

Z METHOD OF AVERAGING AND PERSISTENCY
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ABSTRACT

,, kZ
A method of averaging is developed for the stability analysis of linear differential %

equations with small time-varying coefficients which do not necessarily possess an
average value. The technique is then applied to determine the stability of a linear

* ". equation which arises in the study of adaptive systems where the adaptive parameters are
slowly varying. The stability conditions are stated in the frequency-domain which shows

the relation between persistent excitation and unmodeled dynamics.
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1. INTRODUCTION

For a large class of adaptive feedback systems, as well as for some output error ,

identification schemes, a stability analysis in the neighborhood of the desired behavior

leads to investigating the stability of the following linear system of differential-

operator equations (see e.g., [11-[31, [20])

0 = - H('O)] (I. I a)

where 0(0) = 00 e IRP, e is a positive constant, Rf(.), (') R. -+ R' are regulated

and bounded, and H is a linear-time-invariant convolution operator with kernel h(t) -
" "

and transfer function H(s), i.e.,

(Hu)(t) = h(t--)u(r)dc (I.1b)
0

We consider the case when H(s) is strictly proper and exponentially stable, thus, h(t) "

is bounded by a decaying exponential. The strictly proper assumption is not necessary

for analysis, but it is more often the case when (1.1) arises from dynamical systems. ."_

The same can be said for considering the general convolution (1.1b) and not just the .'

case of raional H(s).

The specific problem we consider is slow adaptation (small c > 0), and to

determine sufficient conditions for which the map (f,0) -+ 0 defined implicitly by .-

(1.1), is exponentially stable, i.e., there are positive constants K, a such that

PON(:5 Ke-Q(T)()Jdtc + Ke-cul 00 1 (1.2) %

0

When such a condition exists, it then follows that the adaptive systems from which ,

(1.1) arose is locally stable.

Linearization and Local Stability "

In [2], for example, system (1.1) is obtained as a result of linearization of the -

adaptive system in the neighborhood of a "tuned" system, i.e., a system where the

adaptive parameters are set to a constant value 0* e 1W' and whose behavior is

deemed acceptable. Hence, in (1.1), 0(t) is the vector of parameter errors between the .- .

-...:)a. . .
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parameter estimate at time t and the tuned value 0*, *(t) is the regressor vector
from the tuned system (e.g., filtered revisions of measured signals), and the scalar E
is the magnitude of the adaptation gain which essentially controls the rate of
adaptation. The operator H depends on the actual system being controlled or,

identified and also on the tuned parameter setting I,.

It is shown in [2,31 that if system (1.1) is exponentially stable, then the adaptive
* system is locally stable, i.e., the adaptive system behavior will remain in a

neighborhood of the desired behavior provided the initial parameter error 0(0) and
the effect of external disturbances are sufficiently small. Although the results in [2,3]
were arrived at using input-output properties [16], the local stability property also

. ,'follows from the results on "total" stability [4], [20].

Unmodeled Dynamics and Slow Adaptation

In the ideal case there are a sufficient number of adaptive parameters (the number
p) such that the tuned, parameter setting results in H(s) being strictly positive real
(SPR), i.e., ReH(jo)) > 0, V co e lR+. Under these conditions, we have the following
results (see e.g., [5]-[8], [1]): (1) system (1.1) is stable, i.e., 0(t) is bounded but not
necessarily constant; (2) if, in addition, 0(t) is persistently exciting, then system (1.1)
is exponentially stable. The trouble starts when there are an insufficient number of %-",

parameters to obtain H(s) e SPR, as is the case in adaptive control when the plant %
.4 has unmodeled dynamics (see e.g., [2,7], [12]).

In this paper we will examine the stability of (1.1) when c is small, (t) is
persistently exciting, and H(s) is not necessarily SPR but only exponentially stable.

', a Riedle and Kokotovic [9] refer to this case as "slow adaptation" and by using the
method of averaging described by Hale [10], they show that the stability of (1.1) is

critically dependent on the spectrum of the excitation in relation to the frequency
response H(j o). With the same assumptions, Astrom [11] uses averaging techniques ..

to analyze the interaction between unmodeled dynamics and external inputs in the ..Z

, counter-example posed by Rohrs et al. [12]. Both these analyses require the
assumption that 0(t) is almost periodic and that H(s) is rational. In this case Riedle
and Kokotovic [9] show system (1.1) is exponentially stable if

. Il [>()()*]ReH(jo) > 0 (1.3)

~ .....

P,,
" g .a1
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where fl and {a(CO), to rE Q) are, respectively, the Fourier exponents and
coefficients of io(t). Condition (1.2) can be considered as a signal dependent positivity-

conlditionl, but unlike the SPR condition ReH( jo)) is not required to be positive at all
frequencies.

The main contribution of this paper is to extend the theory of averaging to S

include the case when 4i(t) does not have a (generalized) Fourier series
representation, but is only known to be regulated and bounded. Thus, 0(t) need not
be almost periodic nor even possess an average value. We also state stability
conditions in the frequency-domain in a formn similar to (1.2). Moreover, H(s) need -

not be rational. Analogous results can be stated for discrete-time systems, see, e.g.,

[13].

4. Averaging: Uses and Limitations 5

The averaging theory developed here, as well as averaging theory in general, has do

* its uses and limitations for adaptive system. In the first place, the theory requires slow
* adaptation which can be counter-productive because performance can be below par for S

the long period of time it takes for the parameters to adjust. Secondly, the averaging
results developed in the sequel concern linear time-varying systems only, so that
application of these results to the nonlinear adaptive system requires a linearization. In
this sense we can obtain information, including frequency domain information, about
the dynamical behavior of the adaptive system in the neighborhood of the tuned
system. Both stability and instability conditions are discussed. The results arising

4 from a combination of small gain theory and perturbation methods, e.g., [2, 3, 14, 15],

are restricted to stability results, and are far less quantitative. * .

Organization of Paper

The paper is organized ats follows: Section 2 develops a method of averaging for -~

linear systems with sample averages. In Section 3 we apply the general results of
* ~Section 2 to (1.1) and obtain conditions for stability and instability. In Section 4 these :-_

are interpreted in terms of frequency domain stability conditions. In Section 5 we r
provide a general discussion. :

90.



The symbol 1- denotes both the vector norm as well as its induced matrix norm. ~
Similarly, II, p e [1,..], denotes the L.-norm of a vector or matrix function, i.e., for

pe (I.-), JIF6 AI F(t) dt)lP, and I1IL = es::sup {IFit) 1: t >o0.L j(:;

deoe.h hegnvleo arxAad 9A eoe h e iglrvleo

A, i.e., q8(A) = [X,(A A)]1 '2. An operator H is LP-stable if D constants k, b such

that flHiu)J, : kIjuIj6+b, V u e Lp. The smallest k is referred to as the Lp-gain, and%%
is denoted by jp(H).

2. METHOD OF AVERAGING FOR LINEAR HOMOGENEOUS SYSTEMS

In this section we will consider the homogeneous linear time-varying system .'

x 4~(t)x (2.1)A

Lemma 2.1:

Suppose in (2.1) that e is a real constant and A(-): IR + lR"' is regulated and
bounded. Then V s,t er I R, the transition matrix F(s4,z, s) of (2.1) is given by

F(s+T, s) =exp[cTA.(s)] + R(s, Er) (2.2) ~ ~

where AL

A1(f = A(t~dt (2.3) .*p.

is referred to as the sample average value of AQ) on the interval s < t & s-r, and

IIR(-, ez)I.i :5 (FerIA L)2exp(eU1A L) :=r(E'IIAII.) (2.4)

Proof. \.

Using the Peano-Baker series representation for the transition matrix of (2. 1)WA
gives: '

F(s+c, s) =I+c f AQt)dt+y, ek j AQ1j) f A(t2) ... JA(ttjdd: d

91-b. -4
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6 A

Using definitions (2.2)-(2.3) for R(s, CT) and A(s), respectively, together with the
series expansion for exp(ec. 1(s)) results in,

R(s, Ec) = [I(c-A!(s))k 1k!

S.2.(e-IIA'L)kk! SE ]R.
'S k=2

-IIL) exp(cIJAIL)
,.. .--. : .

since IIA(')l < IA()IL. This proves (2.4). ' "5

Remarks:

1. Assuming that A(t) is regulated and bounded is sufficient for the existence .

and uniqueness of solutions [17].

2. Observe that Lemma 2.2 is valid V s,5 ce 1R. and V e R. In the
sequel we use Lemma 2.2 only for the case when E > 0 and Ex is small. A l

The stability properties of (2.1) can be established by application of Lemma 2.2 as
stated in Theorem 2.1 below. We first require: .

Definition: v,.,0

The function I('): RI."Tn - IR, defined by

P(M)= li ([+oMj - 1)/a (2.5)

is called the measure of the matrix M, where [I is an induced matrix norm on

For any induced matrix norm and its corresponding measure, the, fqlowing . ",z

properties hold (see, e.g., [16]):

92 ..
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(PI) -1 M I< -I (-M)S .Re%(M) < IL(M)S I M 1, V M E R (2.6a)

(P2) g(M1+M2) < (MI) + O(M2), V MM 2 E R"" (2.6b)

(P3) The transition matrix F(t,') of i = M(t)x satisfies,

exp(- J p[-M(s)]ds) _ IF(t,-)l 5 exp( g[M(s)lds) (2.6c)

(N4) If the vector norm on R n is IxI = (x'Px)lt2, P = P' > 0, then

I M I = max oi(PII2Mp -1/2)  (2.6d)

g(M) = max ).(PIf2Mp'I2+P1'2M'PI/ 2) (2.6e)

These properties, together with Lemma 2.2, yield the following stability result for
", -. system (2.1).

Theorem 2.1:

Suppose A(t) in (2.1) is regulated and bounded with the sequence of sample
averages fA7 (kT), V k e Zj. Then:

(i) If 2 T>0 and a>0 suchthat

g[4. A7<kT)J : <-ac k eZ (2.7)

then 2 Ti > 0 such that V T r. (0,rI) the zero solution of (2.1) is u.a.s.

(ii) If 2 T>0 and a>0 such that

[ <v k Z+ (2.8)

then El il > 0 such that V ET e (0,rj) the zero solution of (2.1) is
completely unstable.

-4 Proof.

S--S Combining (2.6c) with (2.2) gives,

. exp[-E-p(-A.(s)lt < IF(s+, s)-R(ser)j = Jexp[ Ec(s)] 7

< exp[ lt(A,(s))] V s,r e 1R4

9-3
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which implies,

IF(s+, s)l < exp[E'9L(A(s))] + r(E'M) (2.9)

IF(s+T, s) > exp[-cgL(A(s))] - r(evn) (2.10)

where we have used (2.4) with IAIL m.

We first prove part (i) by using condition (2.7) and inequality (2.9) with ' = T

and s = AT. This gives, . ... 
+

IF((k+I)T, kT)j < exp(-ETa) + r(ETm) V k Z+

We now establish that for all small ET£> 0, IF((k+I)T, kT)l < 1, i.e., the map
0(kT) -+ 4((k+1)7) is a contraction. From the definition of r(-) in (2.4), it follows
that for any t > 0 there is a 11 > 0 such that .

exp(-la) + r(lm) = 1 (2.11)

Hence, for all ET e (0,q), there is a 3 > 0 such that

exp(--cTa) + r(eTm)= exp(-ET3) < 1 (2.12) ,.

which shows the contraction property.

Now, for any is e R , with t > s, there exists an integer k > 0 such that
s+kT < t < s+(k+l)T. Thus,

IF(t,s)l = IF(ts+k7)F(s+kT, s+(k-1)T) ... F(s+T, s)l

< IF(t-s+k)lexp(-ckTI)

< rFs+k7)Iexp(-E(t-s-7)3) ,by AT > t-s-T

< exp(eT(m+3)exp(-e(t-s)3) -: "'"'

The last line follows from Property (2.6c), i.e.,

IFQ,s+k7)1 : exp( ; Lfr.A(?r)]dr)

" exp(m(t-s-k7)) , by p[A( )] < IA(x)l < m

" exp(mT) , by t-s-kT e (0,7)
94 d
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This proves part (i) of Theorem 2.1. The proof of part (ii) follows from the above- -

analysis, but starting with inequality (2.10).

Using the same technique, but allowing A(-) (equivalently A,<-)) to possess a

uniform average, we obtain the following sharper result.

Theorem 2.2:

Suppose A(t) in (2.1) is regulated, bounded, and has a uniform average

lim A7(s)-- A (2.13)

T-.

uniformly V s e JR. Under these conditions:

(i) If 3 a> 0 such that

Re).(A) < - a (2.14)

tz then 3 > 0 such that V e e (0,c0) the zero solution of (2.1) is u.a.s.

(ii) If 2 a > 0 such that Re?.(A) * 0 and" " .

max ReX) > a (2.15)

then 2 c0 > 0 such that v e e (0,EO), the zero solution of (2.1) is

unstable.

Proof. -_ ,: ,

We first prove part (i). Assumption (2.13) means that V 8>0, , -0,.

3 T(8) > 0 such that

070 X)- < , V s • ]R+ (2.16) , .d

From (2.9). with IA()IL = m, we have

IF(s + T, s)l < exp[e7jt(A+ Ai<s) - A) + (eTm)2exp(eTm) WE.

< exp[eT(gL(A) + 8)] + (ETm) 2exp(ETm) ' ".

Since ReX(A-) < 0, there is a constant matrix P = P' > 0 which satisfies the

-. .. , : * o .. ..I~:.~. -z. ..o . .:.:..o..,.. 4,,;,: .i.-: § * .. %V
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Lyapunov equation,

+ p+ = 0 (2.18) .

Now, choose as a norm on

IXI = (x'Px)1 ,2  (2.19)

From (2.6d) and using (2.18) we then have,

=LA- max X "2 (A'p + pA)p-12 -

-min Xj - 1} -- a (2.20)

Hence, (2.17) becomes, .

IF(s + T, s)l 5 exp[- ET(ca - 8)] + (eTM)2exp(cTM) (2.21)

By assumption (2.13) it is always possible to select T(8) in (2.16) such that b < a. "'
40

By inspection of (2.21), there then exists E0> 0 such that V e e (0, c),

IF(s + T, s)l < 1, V s e -R+, which completes the proof of part (i). Part (ii) can be "- :--
proven in an analogous manner starting with (2.10) and using (2.18) with A replaced
by -A. Note that here Re (A) * 0 is required explicitly.

Discussion
-,. .-. ,.,

The results in Theorem 2.9 and Theorem 2.2 generalize some results obtained by
averaging methods such as those described by Hale [10], or as obtained by Coppel

[18] using the notion of integral smallness. Theorem 2.2 is a classical result of
averaging theory, except that as stated it allows for functions which are not necessarily '"*

almost periodic. The class of functions allowed in Theorem 2.2 -- regulated, bounded,
with a uniform average -- is not precisely characterized. Obviously it includes the .

class of asymptotically almost periodic functions of the form
..4

A() = Ao(t) + AI(t) (2.22)

where Ao 0 ) is almost periodic and AI() e L1I, p e [I,.o].

Theorem 2.1 considers a larger class of functions -- those without an averae -- at ...

the expense of a weaker result: the stability-instability boundary is not as sharp as in %

96 4
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Theorem 2.2.

An example of a function which satisfies the conditions of Theorem 2.1, but not I'

of Theorem 2.2 is:

A(t) = A0 + (1/ -,r2jAI(sin log t4cos log t) (2.23)

where Ai = A! > 0, i = 0, 1 such that Ao-Al > 0. This function does not have a
uniform average, as can be seen from

SJ A(t)dt = A0 + . sin log(s+7) - -L sin log s) (2.24) -'i

However, it satisfies the conditions of Theorem 2.1 because from (2.23)

"+TA(t)dt > A0 -A,>0 s e R+, V T>0. (2.25)

Condition (2.7), which is the basis for the u.a.s. property, has some interesting

interpretations. In the first place, since cx> 0 is a constant, conditions (2.10)

-*.'provides a uniform bound on the sequence of sample-average measures
*{[A-<kT), k e Z+j. From the definition (2.5), the measure is dependent on the

underlying vector norm. Suppose we choose as the vector norm fxI = (x'Px)1' with
P = P' > 0 a constant matrix. This was done in the proof of Theorem 2.2 where P

was given as the solution to (2.18). In general, however, we have from (2.6e) that

i [AT(k7)] = - max XI -112 [A'T(k)P + PXAkT)] "1 ' }  (2.26)
2

If there is a constant matrix P = P' > 0 such that

max ;i{A}'T(kT)P + PA7<kr)) _< -l , V k e Z+ (2.27)

, ,, then (2.7) holds with the choice

Observe= ma ,,{-]) (2.28)

Observe that (2.27) is not equivalent to

Re ).{A(kT)) < 0 , V k e Z+ (2.29)

, • "• " This latter condition means there is a sequence of matrices {P(k) P(k)' > 0, E Z+j".

which satisfy

-. 9
I'.. ".* ',

d+ "',I F Zp ,+'+ _P, . + .T+.... + _+ -. .. _ . '+ .+,"* ,/ . -,.,... . ... • . . -.. +. ,.,-.. -,,
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max XL.A'r(k)P(k) + F(k)k 7 kT) = - 2 V Z (2.30) k e Z

Unfortunately, it makes no sense to choose a time-varying norm, e.g., Ixl = (xP(k)x) . . .

Hence, condition (2.27) provides a means to satisfy (2.7), provided that constant P

can be found.

A simple sufficient condition for (2.20) is that

max Li{A(k) + A-(k)') <- 2%xo  , V k e Z+ (2.31) In
P.

where %0 is a positive constant. Hence, we can take P = (1/o0)J in (2.27) and thus

(2.10) holds with a = c 0. We will discuss condition (2.31) further when we . " "

specialize Theorem 2.1 for adaptive systems in Section 4.

Theorem 2.1 also requires that eT> 0 be sufficiently small, i.e., that i -
cT e (0,T). From the proof of Theorem 2.1 we can extract a value for 1 and also -.

state bounds on the exponential rates of growth or decay of the transition matrix

F(t,ir) for all t > 1. Specifically, we have:
* '.., ..

Corollary 2.1:

If A(t) is regulated and bounded with I SA(')tL < m, then:

(i) Whenever (2.10) holds for some T > 0, the zero solution of (2.1) is u.a.s. ,-

V ET e (Orl), i.e.,

IF(t,)! < M exp( - e(t -c)p) (2.32)

where il, M, and 13 satisfy:

exp( -,a) + r(im) = I

M = exp(ET(m + 1) > I

exp(--CTD) = exp(-ETc) + r(ETm) < 1 (2.33) *.

(ii) Whenever (2.11) holds for some T> 0, the zero solution of (2.1) is

unstable V ET e (0,Tj), i.e.,

IF(t,c) >_. M exp(C(t - T)13) (2.34) - .

where il, M, and 1 satisfy

exp(i,) - r( n) 1

98
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13

M = exp( - eT(m+ ) < 1 (2.35)

exp(e71) = exp(eTa) - r(cTm) < 1

0

3. STABILITY OF LINEARIZED ADAPTIVE SYSTEM
9v

In this section we apply the results of Section 2 to the linearized adaptive system
(1.1) under slow adaptation, i.e., small e > 0. The first step is to transform (1.1) into
a form suitable for application of Theorem 2.1. This is accomplished by a time-scale

decomposition. That is, under slow adaptation the parameters 0(t) change much
more slowly than the internal states of the dynamical system H. This suggests
approximating (1.1) by the system

0 = [f-( H')O] (3.1)

for which Theorem 2.1 would apply, i.e., replace A(t) in (2.1) with -- ( H ')(t). We
start with the following intermediate result, developed in [20] and based on the
discrete-time formulation in [21].

Lemma 3.1:

System (1.1) is equivalent to

= £[f- R0 + W(fO)] (3.2)

where R is the time varying matrix

R(t) = ( HO')(t) (3.3)

and W(fe) is the linear integral operator

S W(,O) = 4Gs;f- H(O')] (3.3)

with G# the linear integral operator whose kernel is,

= r hQ- s)4'(s)ds , 0 < c < t (3.5)

.a;.

Z % %
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proof.

Integrating by parts gives

H(4') =(HO')9 - Goi

Thums,

W (f,0) = .O [(HO) - HMOM) -

- 1 i by (3.5)

by (1.1).

Discussion

The decomposition of (1.1) into (3.2) is illustrated by the feedback system:

b. aft)

L-. E W

F~-I.' 3.1

Hence, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~. fo.ml,. ,teoeatrc~O a iteefcto ytmsaiiy n

e~f-O) rovies he dmintin stailiing orc. Wewil prve tis sserionin -Z

100 'AFC.
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which is also a Lyapunov transformation, i.e., both original and transformed systems

have identical (Lyapunov) stability properties, see [24, p. 117. In this case system

(3.1) is equivalently represented in state form as

) = ,e(f(r) - 4t(c'z) ,0(0) = 00 (3.7a)

z = Az +1'(t)O , z(0) 0 (3.7b)

Using the "L-transformation"

=z - L()O (3.8a)

where L(t) satisfies

L = AL +W(t) (3.8b)

gives : ..-

0 = iEf(t) - 0(t)c'(L(t)O + 4)] (3.9a) ",

=A - eL(t)[f(t) - 0(t)c'(Lt)O + t)] (3.9b)

Since 0(0) = 00 and z(O)= 0 by definition (1.1), it follows that by assigning.',
L(O)=0 wehave* Nv

R(t) *(t)c'L(t) (3.10)

and hence, (3.9a) becomes

0 = [ft) - R(t)O - O(t)c'4] (3.11)

Since k(0) = 0 from (3.8) and Re X.(A) < 0 because H(s) is stable, it follows that

(t)=O(E). Thus, (3.11) is dominated for small E by 0 = e(f- RO). Consequently,
both the "L-transformation" and the operator decomposition (3.2) are qualitatively
equivalent for small e. P,'W

Using Lemma 3.1, we now state conditions for exponential stability of system
(1.1), i.e., the map (00,) 0.

Note that O choie of initial condition for L(O) is inunutenil when discussing asymptotic sability properties, i.e..
since A is able, different initial conditions give use to different exponentially fast decaying transients. I.',..

'U ",/'. ,?,

'-...

1,1.'o .4

.;::101?
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Theorem 3.1:

Assume that:

(A 1) 0 = -. R(t)0, Rt) = (OH ')(t), is u.a.s. with transition matrix F(t,1)

overbounded by

IF(t,r)l < M e( - )  V t > z > 0 (3.12)

(A 2) The impulse response h(t) of H satisfies '
lh(01 < K e-01 ,V t> 0 .(3.13) ". ,.

Under these conditions, 9 ro> 0 such that V £6 (0,C0), system (1.1) is '

exponentially stable. Specifically, if

= min{ jF 11 p(e) 0 (3.14)

then
_ ePEt J.., 15

, 10(t~lol. < MI 0o Ie-Vp¢)  + '(e)e-EP(c)('T)lf()Id-r (3.15) :)..-

0

where

m(E) = M[1 + EIJEII,/(a - Ei5)2] (3.16) .--.

p(e) = P - Mlll.K2/(a -£E)2 (3.17)

Proof.

Using the decomposition from Lemma 3.1 gives the following expression for
( 1 .1 ) :." ' - ,

0(t) = F(t,0)00 + e(W,/(t) - 2(W20)(t) (3.18)

where WI, W2 are linear integral operators given by :.
W, F(I + WoG) (3.19a)

W2 f F4GOHO" (3.19b) -

and where F has kernel F(t,c). We first show that W, and W2 are exp. stable -, -5, '5*'

integral operators.

Z..

102
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For any integral operator W with kernel w(t,C) we have

(Wu)(t) = w(tt)u(c)dc

0

o R

Therefore, W js exp. stable iff 2 ; > 0 such that

sup <e')w(t,,)J <
N.-.

Let the superscript notation (.)0 denote exponential weighting, i.e., (x')(t)= etx(t).,-
Hence, (Wu)* = W&u' where W' is the linear integral operator with kernel

eI(- )w(tr). Now, following pg. 119 of [16], let IfflWb be defined by

NIWilb = sup Iw(tT) (3.20)
t>,

Hence, W is exp. stable iff CF > 0 such that

IFW0llb < ";. X,,

*Observe also that if G, and G2 are linear integral operators then

IIGIG211b < IIGIIIbyI(G2) (3.21)

Applying these relations to (3.19) for some a > 0 gives,

IIW l16 _ IIFl0I6b[ + EIINILY(G )

Choose a = £[3 with e e (0 ,E0), E0 given by (3.14). Using (3.19)-(3.21) gives

11 (HO) < KI/(c - F-0)

'y1(G[) < 11011. KI(a - £1)2

Hence,

lIW 6l< M[l+II0IIl. KI(a - CA)] = m(E)
IIW216 < MII0II. K2/(cc - ) = [- p(e)]/.

103
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where m(c) and p(c) are defined in (3.16), (3.17). Going back to (3.18), we now

have,

iuowj meCA 1 (0 1 + e-'tEnT)if vr)Io

+ £p)J6)d (3.22)

The result (3.15)-(3.17) follows by directly applying the Bellinan-Gronwall Lemma to

Under Dcsslo w adpain Theorem 3.1 shows that (1.1) is exponentially stable if

-RtOis u~~.Hence, we can apply Theorem 2.1, with A(t) replaced by

--ERt),andarrve t sabiitycondition (2.7), that is:

Sse(11isexponentially stable for all small e > 0 if T T> 0 such that

14-(k)] < 0 , VkE Z.. (3.23) 10 d

where R(k) is the Agh sample average

R(k) =+()TR(t)dt (3.24)
T1

Using (2.27), condition (3.23) holds if there is a constant matrix P =P'>O0 such that

1min ;L{R(k)P + PRk)') > I k r=k Z1+ (3.25)

Moreover, a sufficient condition for (3.23) is that

min ki{R(k) + R(k)'} > a0  V k e Z.. (3.26)

where c is a positive constant. Comparing (3.26) to (3.25) reveals that P =(1/%*)I, S

which means the interval contraction of O(kT) -+ 0((k+l)T) is scaled uniformly, i.e.,-

0'(kT+T)0(kT+7) < 0'(kT)0(kT). The scaliag implications are discussed further in

Section 4 to follow. U..,

1 104
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4. FREQUENCY-DOMAIN STABILITY CONDITIONS

In this section we reformulate condition (3.12) in the frequency domain. This

involves the Fourier transform H(jo)) and an appropriately defined expression for the

spectrum of 40(t). We show that (3.12) requires that 0(t) have a persistent excitation

property, and that the dominant excitation be at those frequencies for which

.9,Re H(jco) > 0.

The first requirement is that 0(t) be restricted to those functions which have aFourier series representation on any finite interval. A known class of such functions is -.

defined as follows (see, e.g., [19]).

Definition:

A function f(): I+R -R "" is a C" function if it is regulated, bounded and "-

-3 a constant 8 > 0 such that any two points t1 , t2 e IR+ where ft.) is

discontinuous are separated by at least an interval 8, i.e., It1-ta2 > 8.

Frequency-domain stability conditions for the stability of (3.1) can now be stated.

Theorem 4.1:

Assume in (1.1) that: -

(A l) Ih(t)l < Ke " ,V

t > 0. (4.1)

(A 2) 0 e CS with piece-wise Fourier series representation V k e Z+:

)- xa(co)ei" V t e [kT,(k+l)7) , T > 8 (4.2)

. where Elk is the set of distinct Fourier exponents and Cak(-) the corresponding
.. . Fourier coefficients. Let B(k) = RPP' be defined by.

B(k) = k(co)"k(co)H(-jco)) V k e Z+ (4.3)

%~ ovesbar ~)denotes complex coajugasion.

105
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Under these conditions:

(i) If B T > 8 such that

J.L[-B(k)] < -211jp.. (K/cz2)IT ,V k e Z,. (4.4)

then B c0> 0 such that V £ e (Oeo), system (1.1) is exponentially ;

stable.

(ii) If 9 T > 8 such that .

A[B(k)] < -211011j1 (K/t 2 )IT k e Z.. (4.5)

then 9 L 0> 0 such that V C e (0,£), system (1.1) is unstable.

Remarks:

I. The representation (4.2) for 0(t) specifies the local frequency content over
t e [kT, (k+1)7l. Such a representation -- if not given -- can always be found if

*(t)e Cj [17]; then (4.2) can be obtained via the Fourier series of the T-periodic
function:

O(t + mT) t e [(k - m)T, (k - m + I)7]

V keN, V me Z

Notice Qt(t) is well-defined on R and has a Fourier series representation:

B, EZ ,.,.40,(t - awco,.)e' V leiR

where I ire

and hence

*t) - , ctk(jO)m)fJ t ; V t r [kT,(k+1)T] (4.6)
meZ

which is of the form (4.2).

2. The matrix B(k) can be equivalently expressed as the sample average value
of the T-periodic part of (4kHok')(t), i.e., ,

(k.1)T
B(k) = - k J *(t)vk(t)'dt (4.7)

TU

-,..-, •s %'

'. ,w , '.'
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where V/(t) is the T-periodic part of H(*t)('), i.e., .

= H(jo) at(c)e' , V t R (4.8) 1M

Proof.t

PrTo prove part (i), it follows from Lemma 3.1 and Theorem 3.1 that it is only

necessarytoshow that (4.4)_implies

4.* j-(k)] < 0 V VkE Z,

where R(k) is given by (3.24). We start by defining

T3(k) W Rk) - D k)

with B(k) from (4.3). Using (4.8) gives ....--/

1 (k+1)T

Bj (k) L . J *,ik'(t)dt _

U where A

h(t - cd- h(t - v

h(t - ?)4,t)d? - I h(t -,k(cd

The last line follows from (4.6), i.e., ft(t) = *(t) for t e [kT,(k+1)T). Using (4.1)
gives,

,-.(t) _< (201IL Ktct)e' .
from which it follows that

* 
.. 

-.

Ak)l S 2111O. (Ki 2)YT , v k e Z+,

This together with inequality (2.6a) proves part (i). Part (ii) follows analogously by

107 '-4



22

replacing R(k) with -R(k). 
; .

If 0(t) is further restricted so that it has a uniform average, then we can sharpen
the stability-instability boundary. For example, if *Q(t) is almost periodic then a
Fourier series representation exists V t E R+, and thus, it has an average [101. The
stability conditions for this case are stated as follows.

Theorem 4.2: .

Suppose in (1.1) that 0(t) is almost periodic with generalized Fourier series,., ."

0(t) - o)e , V t e lR+ (4.9)

where Ql e R are the distinct Fourier exponents and {cx(co), co e Ql are the Fourier -

coefficients. Define the matrix B by

B = cc ()(o)'H(-z) (4.10) '-

, ) C 
,! '.

If Re X(B) = 0 then D eo > 0 such that V E r (0,e0), system (1.1) is:

(i) exponentially stable if Re X(B) < 0 (4.11)

(ii) unstable if max Re Xj(B) > 0 (4.12)

Remark: The proof of Theorem 4.2 is entirely analogous to that of Theorem 4.1. X

Theorem 4.2 is the result obtained in [9] when *(t) is almost periodic. Theorem 4.1 b.___

is a generalization to 0(.) e C.

5. DISCUSSION OF RESULTS .. -

(A) Effect of Transients on Sample Average

An informative interpretation of stability condition (4.4) is that the average energy
in the T-periodic part of (%tH/')(t) must dominate (or overcome) the possibly
negative efforts of the transient terms. In other words, the period T must be
sufficiently larger than the dominant time constant of H, i.e., T I 1/ci. Note that the .-

term 2110iJE.(K/ 2) essentially arises from initial conditions or stored-energy in' H at *..

.. ,:...

o8 
..
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t kT. Obviously when (t) has a uniform average it is always possible to select T
to be sufficiently large, e.g., as shown in the proof of Theorem 2.2.

Using (2.27) condition (4.4) holds if there is a constant matrix P = P> 0 such .V

that V k eZ,

rmin ).AQ(k)] > I V k e Z+ (5.1a)

w here Q (k) - . Z H (-j/( )[P Xk ( 4)+ X k(o )P ] (5 .1b )

X(Co) = CqW() k()' = [(c)]' (5.1c)

(B) Relation to Persistent Excitation

A necessary condition for the existence of P which satisfies (5.1) is that for
some finite integer q > (p-l)/2 and V k e Z+, X0

.. rank[(O), C..(q), k(COI),..., Uk((Oq)] = p (5.2)

If this were not the case then min i[Qk(P)] = O, V ke Z+ and V P =P' > 0.

Hence, Theorem 4.1 implicitly restricts #(') e C to those functions whose (time-
varying) Fourier coefficients satisfy the rank condition above. This class of functions,

Showever, are precisely those which can be categorized as persistently exciting [1):

Definition:

A function fl-): R +  R' R" is persistently exciting (PE) over an interval h if it ' %

is regulated, bounded, and 2 constants h > 0 and > •0 such that %

.mi' nn Xi. f~Y( •W d >3 V s e R (5.3)

SOi

Denote such functions by ,(') e PE"(h,).

Ie It follows from the definition that if e() PEV(h,p) rN CS then the rank
condition (5.2) will hold for any T > h > 6, and thus, (5.1) may be satisfied for
some matrix P. The point to emphasize is that persistent excitation is not sufficient

109 8-A
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for stability, except in the case when H(s) is SPR [1). Thus, we can view (5.1) as a .

signal dependent positivity condition. In general, the PE condition is necessary for
stability, but as seen from (4.5) in Theorem 4.1, even if it holds, the system can be jAN
still be unstable.

(C) Parameter Scaling 
el

The matrix P in (5.1) can be viewed as a scaling of the parameter vector. That
is, if (5.1) holds for some P, then for all small E > 0, 0 -eR(t)6 is u.a.s. in the
sense that O(t)'PO(t) -+ 0 exponentially fast as t -- o. Thus, parameters will tend to
converge with different scalings. If for some given signal 4(t), the determined

scaling matrix P gives unwanted responses, then the signal can be reshaped so as to

produce a more desirable scaling. The difficulty is in finding the matrix P. If *(t) "
is almost periodic then Theorem 4.3 holds, and we can take P as the solution to
PA+A'P = -21. When 0(t) has a sample-average, there is no simple means to findP.

If there is sufficient a priori knowledge about the effect of parameters on the
system, then this information will provide the desired scaling in the following sense. ,

It is always possible to prescale 0 and then select P = I where a0 is some

positive constant. With this choice, condition (5.1) becomes,

min I H(-j -Co)Re[Xk(o)]} > aO  V ke Z (5.4)i we C4 (5.4),

This is equivalently expressed as, -

min Xj{ Y Re[H(jo)]Re[X(co)]} > ac/2 V k e Z+ (5.5)
* WEfl

which has a more informative interpretation in terms of the usual positivity conditions '

- on H. For example, a strictly proper transfer function H(s) is strictly positive real
(SPR) if it is exponentially stable and 3 constant p > 0 such that [16]:

".. Re[/)(jto)] > pHj(io)l2  0V 0o ] R.'-

This condition must hold at every frequency, whereas (5.5) requires Re[h(jco)] > 0 at
those discrete frequencies in iR where the magnitude of the input spectrum is large.

Conversely, at those frequencies in 1R+ where Re[/H(jc)] < 0, the magnitude of the
input spectrum should be small. Since (5.5) will fail if Re/H(jw) < 0, V 0O e R+, it -

110
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follows that Re (ftw) > 0 at some frequencies, hence, the motivation to refer to (5.1)
as a positivity condition.

(D) Bounds on e

The upper bound co on the size of C > 0 to insure stability can be extracted

from the proof of Theorem 4.1. Looking back over Theorem 3.1, Theorem 2.1 and

subsequent discussions we have,

6o = minjP, l ,-21 (5.6)

where el and e2 satisfy

, 1 - £ Iel ..K2/ - £11)2 0 (5.7)

exp(- E2TCo) + (e2Tco)2exp(2To) = 1 (5.8)

Recall from the proof of Theorem 3.1 that oto, a, P, M, and K are defined from:

,q. [ " (k H.')(t)d] < --aO  v k e Z+ (5.9)

M = exp(eT(m + 13) (5.10)

Ih(OI < K exp(- ot) (5.11)

exp(- eT13) = exp(- TOU) + (£Tco0) 2exp(rTrbo) (5.12)

- (E) A Limitation Arising from Averaging

Suppose H(s) is SPR and (4.4) holds. Hence, system (1.1) is exponentially

stable for all small e > 0. Since (4.4) holds, it follows that *(t) is persistently
exciting. However, from other arguments (see, e.g., [1]) we know that under these
same conditions the zero solution of (3.1) is u.a.s. for all e > 0. Thus, Theorem 4.1 is
conservative in this case in regard to the limitations on e. However, when H(s) is
not SPR Theorem 4.1 is now applicable whereas the results in [1] do not apply. In

4,;ma. fact in this latter case when e gets too large then system (1.1), can be unstable, even

if (4.4) holds. For example, if in (1.1) *(t) = sin(O.35t) and h(s) = 1/(s2+2s+2)
then condition (4.4) is satisfied. The simulations in Fig 5.1 with 0(0) = 1 shpw that ..-..

the zero solution is u.a.s. for e =4 but is completely unstable for e =8.

N.1-

111 ,_--_



26 W

22

0 __ 6 2 i 8 2 4 2

,. ___ _ __ .*'I __

I ".t '..'. "

* .- °°- .. ,.

-2 -'-_ _ _"-"

0 3 6 9 12 15 18 21 24 27,.

TIME (SEC) "
N h*,% *N.'..'

Figure 5.1

Comparison with Averaging Analysis of Stochastic Recursive Algorithms

Comparing our results with the ordinary differential equation approach (ODE),
used in the analysis of stochastic recursive algorithms, [22], [23] we notice the
following differences:

(1) The ODE approach can deal with nonlinear recursions, whilst our analysis is "_.
restricted to the linear case. It is possible to extend our results to the nonlinear case,

but this would introduce more technicalities (see e.g., (20]) perhaps obscuring the main
idea of "local averages." .

(2) In the ODE approach it is assumed that the adaptable gain (our e) converges
to zero (and is not summable), whilst in the present contribution E is a small positive..: .
constant.

(3) The main difference lies in the condition imposed on the regressor vector
sequence. Typically, the ODE approach relies on an ergodicity or mixing assumption
to infer the existence of cesaro-mean along the sample paths ( a average). Our -

conditions only involve finite sample path properties of the regressor vector and related

112 66-S.J .a
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quantities; this makes the concept of cesaro-mean or global average meaningless. In
this sense, the ODE approach is closer to [9a,b] where periodicity or almost periodicity
are invoked to guarantee the existence of averages. In a way, our conditions allows V-
for a second slow time scale, the slower time scale on which the nature of the

X regressor vector is allowed to change.

". ~(4) The present approach yields instability results as well, a point not touched-" - .

upon in the ODE approach.

6. CONCLUSION

We have presented a method of averaging for linear time varying systems,
allowing one to deal with general time motions, thus removing the classical restriction
of almost periodicity.

This method can be applied to the nonlinear adaptive control problem after
linearizing the system in the neighborhood of the tuned solutions. Both (local)
stability and instability have been discussed. The conditions obtained to guarantee
local stability can be expressed in frequency domain terms.
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